Chandan Saha, Sarit K. Ghosh, Pooja Kumari, Venkata K. Perla, Harishchandra Singh, Kaushik Mallick
{"title":"通过高效氧空位缺陷工程提高氮化碳官能化二氧化钛的催化性能,用于肾上腺素的电化学识别","authors":"Chandan Saha, Sarit K. Ghosh, Pooja Kumari, Venkata K. Perla, Harishchandra Singh, Kaushik Mallick","doi":"10.1007/s12678-023-00860-9","DOIUrl":null,"url":null,"abstract":"<div><p>Oxygen defect engineering is a reliable and efficient approach to modulate the electronic structure of metal oxides for the improvement of catalytic efficiency. In this work, carbon nitride supported titanium dioxide nanoparticle, with the space group of I41/amd, was prepared using a high temperature synthesis route. Transmission electron microscope study revealed that titanium dioxide particle were dispersed uniformly on the carbon nitride network. The X-ray photoelectron spectroscopy analysis predicted the formation of oxygen defects in the matrix of titanium oxide, and it also indicated the presence of titanium ions with mixed valence states. The synthesized hybrid system was evaluated as an electrocatalyst for the electrochemical detection of epinephrine using cyclic voltammetric and square wave voltammetric techniques. A custom-made device was also fabricated using synthesized hybrid material for the purpose of evaluating the electrochemical sensing of epinephrine in a pharmaceutical sample.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 2-3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00860-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced Catalytic Performance of Carbon Nitride-Functionalized Titanium Dioxide through Efficient Oxygen Vacancy Defect Engineering for Electrochemical Recognition of Epinephrine\",\"authors\":\"Chandan Saha, Sarit K. Ghosh, Pooja Kumari, Venkata K. Perla, Harishchandra Singh, Kaushik Mallick\",\"doi\":\"10.1007/s12678-023-00860-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxygen defect engineering is a reliable and efficient approach to modulate the electronic structure of metal oxides for the improvement of catalytic efficiency. In this work, carbon nitride supported titanium dioxide nanoparticle, with the space group of I41/amd, was prepared using a high temperature synthesis route. Transmission electron microscope study revealed that titanium dioxide particle were dispersed uniformly on the carbon nitride network. The X-ray photoelectron spectroscopy analysis predicted the formation of oxygen defects in the matrix of titanium oxide, and it also indicated the presence of titanium ions with mixed valence states. The synthesized hybrid system was evaluated as an electrocatalyst for the electrochemical detection of epinephrine using cyclic voltammetric and square wave voltammetric techniques. A custom-made device was also fabricated using synthesized hybrid material for the purpose of evaluating the electrochemical sensing of epinephrine in a pharmaceutical sample.</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 2-3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12678-023-00860-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00860-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00860-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced Catalytic Performance of Carbon Nitride-Functionalized Titanium Dioxide through Efficient Oxygen Vacancy Defect Engineering for Electrochemical Recognition of Epinephrine
Oxygen defect engineering is a reliable and efficient approach to modulate the electronic structure of metal oxides for the improvement of catalytic efficiency. In this work, carbon nitride supported titanium dioxide nanoparticle, with the space group of I41/amd, was prepared using a high temperature synthesis route. Transmission electron microscope study revealed that titanium dioxide particle were dispersed uniformly on the carbon nitride network. The X-ray photoelectron spectroscopy analysis predicted the formation of oxygen defects in the matrix of titanium oxide, and it also indicated the presence of titanium ions with mixed valence states. The synthesized hybrid system was evaluated as an electrocatalyst for the electrochemical detection of epinephrine using cyclic voltammetric and square wave voltammetric techniques. A custom-made device was also fabricated using synthesized hybrid material for the purpose of evaluating the electrochemical sensing of epinephrine in a pharmaceutical sample.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.