具有恒定 $$\beta $$ 的空间投票游戏中的多元性

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Arnold Filtser, Omrit Filtser
{"title":"具有恒定 $$\\beta $$ 的空间投票游戏中的多元性","authors":"Arnold Filtser, Omrit Filtser","doi":"10.1007/s00454-023-00619-5","DOIUrl":null,"url":null,"abstract":"<p>Consider a set <i>V</i> of voters, represented by a multiset in a metric space (<i>X</i>, <i>d</i>). The voters have to reach a decision—a point in <i>X</i>. A choice <span>\\(p\\in X\\)</span> is called a <span>\\(\\beta \\)</span>-plurality point for <i>V</i>, if for any other choice <span>\\(q\\in X\\)</span> it holds that <span>\\(|\\{v\\in V\\mid \\beta \\cdot d(p,v)\\le d(q,v)\\}| \\ge \\frac{|V|}{2}\\)</span>. In other words, at least half of the voters “prefer” <i>p</i> over <i>q</i>, when an extra factor of <span>\\(\\beta \\)</span> is taken in favor of <i>p</i>. For <span>\\(\\beta =1\\)</span>, this is equivalent to Condorcet winner, which rarely exists. The concept of <span>\\(\\beta \\)</span>-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion. Let <span>\\(\\beta ^*_{(X,d)}=\\sup \\{\\beta \\mid \\text{ every } \\text{ finite } \\text{ multiset } V{ in}X{ admitsa}\\beta \\text{-plurality } \\text{ point }\\}\\)</span>. The parameter <span>\\(\\beta ^*\\)</span> determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane <span>\\(\\beta ^*_{({\\mathbb {R}}^2,\\Vert \\cdot \\Vert _2)}=\\frac{\\sqrt{3}}{2}\\)</span>, and more generally, for <i>d</i>-dimensional Euclidean space, <span>\\(\\frac{1}{\\sqrt{d}}\\le \\beta ^*_{({\\mathbb {R}}^d,\\Vert \\cdot \\Vert _2)}\\le \\frac{\\sqrt{3}}{2}\\)</span>. In this paper, we show that <span>\\(0.557\\le \\beta ^*_{({\\mathbb {R}}^d,\\Vert \\cdot \\Vert _2)}\\)</span> for any dimension <i>d</i> (notice that <span>\\(\\frac{1}{\\sqrt{d}}&lt;0.557\\)</span> for any <span>\\(d\\ge 4\\)</span>). In addition, we prove that for every metric space (<i>X</i>, <i>d</i>) it holds that <span>\\(\\sqrt{2}-1\\le \\beta ^*_{(X,d)}\\)</span>, and show that there exists a metric space for which <span>\\(\\beta ^*_{(X,d)}\\le \\frac{1}{2}\\)</span>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"47 4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plurality in Spatial Voting Games with Constant $$\\\\beta $$\",\"authors\":\"Arnold Filtser, Omrit Filtser\",\"doi\":\"10.1007/s00454-023-00619-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a set <i>V</i> of voters, represented by a multiset in a metric space (<i>X</i>, <i>d</i>). The voters have to reach a decision—a point in <i>X</i>. A choice <span>\\\\(p\\\\in X\\\\)</span> is called a <span>\\\\(\\\\beta \\\\)</span>-plurality point for <i>V</i>, if for any other choice <span>\\\\(q\\\\in X\\\\)</span> it holds that <span>\\\\(|\\\\{v\\\\in V\\\\mid \\\\beta \\\\cdot d(p,v)\\\\le d(q,v)\\\\}| \\\\ge \\\\frac{|V|}{2}\\\\)</span>. In other words, at least half of the voters “prefer” <i>p</i> over <i>q</i>, when an extra factor of <span>\\\\(\\\\beta \\\\)</span> is taken in favor of <i>p</i>. For <span>\\\\(\\\\beta =1\\\\)</span>, this is equivalent to Condorcet winner, which rarely exists. The concept of <span>\\\\(\\\\beta \\\\)</span>-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion. Let <span>\\\\(\\\\beta ^*_{(X,d)}=\\\\sup \\\\{\\\\beta \\\\mid \\\\text{ every } \\\\text{ finite } \\\\text{ multiset } V{ in}X{ admitsa}\\\\beta \\\\text{-plurality } \\\\text{ point }\\\\}\\\\)</span>. The parameter <span>\\\\(\\\\beta ^*\\\\)</span> determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane <span>\\\\(\\\\beta ^*_{({\\\\mathbb {R}}^2,\\\\Vert \\\\cdot \\\\Vert _2)}=\\\\frac{\\\\sqrt{3}}{2}\\\\)</span>, and more generally, for <i>d</i>-dimensional Euclidean space, <span>\\\\(\\\\frac{1}{\\\\sqrt{d}}\\\\le \\\\beta ^*_{({\\\\mathbb {R}}^d,\\\\Vert \\\\cdot \\\\Vert _2)}\\\\le \\\\frac{\\\\sqrt{3}}{2}\\\\)</span>. In this paper, we show that <span>\\\\(0.557\\\\le \\\\beta ^*_{({\\\\mathbb {R}}^d,\\\\Vert \\\\cdot \\\\Vert _2)}\\\\)</span> for any dimension <i>d</i> (notice that <span>\\\\(\\\\frac{1}{\\\\sqrt{d}}&lt;0.557\\\\)</span> for any <span>\\\\(d\\\\ge 4\\\\)</span>). In addition, we prove that for every metric space (<i>X</i>, <i>d</i>) it holds that <span>\\\\(\\\\sqrt{2}-1\\\\le \\\\beta ^*_{(X,d)}\\\\)</span>, and show that there exists a metric space for which <span>\\\\(\\\\beta ^*_{(X,d)}\\\\le \\\\frac{1}{2}\\\\)</span>.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"47 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00619-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00619-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一组选民 V,由度量空间 (X, d) 中的多集表示。如果对于任何其他选择(q\in X)都成立,那么对于V来说,一个选择(p\in X)就被称为plurality point,即(|\{v\in V\mid \beta \cdot d(p,v)\le d(q,v)\}| \ge \frac{|V|}{2}\).换句话说,至少有一半的投票者 "更喜欢 "p而不是q,当\(\beta \)的额外因子被用于支持p时。对于\(\beta =1\),这等同于孔多塞赢家,而孔多塞赢家很少存在。Aronov, de Berg, Gudmundsson 和 Horton [TALG 2021]提出了 \(\beta \)-plurality的概念,作为对Condorcet准则的一种放松。让 \beta ^*_{(X,d)}=\sup \{beta \mid \text{ every }\(有限的)\(多集)V{ in}X{ admitsa } (plurality)\点)。参数 \(\beta^*\)决定了达到稳定决策所需的放松程度。阿罗诺夫等人的研究表明表明,对于欧几里得平面,(\beta ^*_{({\mathbb {R}}^2,\Vert \cdot \Vert _2)}=\frac{sqrt{3}}{2}\),更一般地说、对于 d 维欧几里得空间,(\frac{1}{sqrt{d}}le \beta ^*_{({\mathbb {R}}^d,\Vert \cdot \Vert _2)}le \frac{sqrt{3}}{2})。在本文中,我们证明了对于任意维度 d(注意,对于任意维度 d(d\ge 4\),\(\frac{1}{sqrt{d}<0.557\le \beta ^*_{({\mathbb {R}}^d,\Vert \cdot \Vert _2)})。此外,我们还证明了对于每个度量空间(X,d)来说,\(\sqrt{2}-1\le \beta ^*_{(X,d)}\) 都是成立的,并且证明了存在一个度量空间,对于这个空间来说,\(\beta ^*_{(X,d)}le \frac{1}{2}\) 是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plurality in Spatial Voting Games with Constant $$\beta $$

Plurality in Spatial Voting Games with Constant $$\beta $$

Consider a set V of voters, represented by a multiset in a metric space (Xd). The voters have to reach a decision—a point in X. A choice \(p\in X\) is called a \(\beta \)-plurality point for V, if for any other choice \(q\in X\) it holds that \(|\{v\in V\mid \beta \cdot d(p,v)\le d(q,v)\}| \ge \frac{|V|}{2}\). In other words, at least half of the voters “prefer” p over q, when an extra factor of \(\beta \) is taken in favor of p. For \(\beta =1\), this is equivalent to Condorcet winner, which rarely exists. The concept of \(\beta \)-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion. Let \(\beta ^*_{(X,d)}=\sup \{\beta \mid \text{ every } \text{ finite } \text{ multiset } V{ in}X{ admitsa}\beta \text{-plurality } \text{ point }\}\). The parameter \(\beta ^*\) determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane \(\beta ^*_{({\mathbb {R}}^2,\Vert \cdot \Vert _2)}=\frac{\sqrt{3}}{2}\), and more generally, for d-dimensional Euclidean space, \(\frac{1}{\sqrt{d}}\le \beta ^*_{({\mathbb {R}}^d,\Vert \cdot \Vert _2)}\le \frac{\sqrt{3}}{2}\). In this paper, we show that \(0.557\le \beta ^*_{({\mathbb {R}}^d,\Vert \cdot \Vert _2)}\) for any dimension d (notice that \(\frac{1}{\sqrt{d}}<0.557\) for any \(d\ge 4\)). In addition, we prove that for every metric space (Xd) it holds that \(\sqrt{2}-1\le \beta ^*_{(X,d)}\), and show that there exists a metric space for which \(\beta ^*_{(X,d)}\le \frac{1}{2}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信