在简单绘制的完整图形中寻找平面结构的扭曲方法

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger
{"title":"在简单绘制的完整图形中寻找平面结构的扭曲方法","authors":"Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger","doi":"10.1007/s00454-023-00610-0","DOIUrl":null,"url":null,"abstract":"<p>Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point <i>O</i> such that each ray emanating from <i>O</i> crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from <i>O</i> that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with <i>n</i> vertices contains <span>\\(\\Omega (n^{\\frac{1}{2}})\\)</span> pairwise disjoint edges and a plane cycle (and hence path) of length <span>\\(\\Omega (\\frac{\\log n }{\\log \\log n})\\)</span>. Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing <i>D</i> is c-monotone if there exists a point <i>O</i> such that no edge of <i>D</i> is crossed more than once by any ray that emanates from <i>O</i> and passes through a vertex of <i>D</i>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs\",\"authors\":\"Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger\",\"doi\":\"10.1007/s00454-023-00610-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point <i>O</i> such that each ray emanating from <i>O</i> crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from <i>O</i> that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with <i>n</i> vertices contains <span>\\\\(\\\\Omega (n^{\\\\frac{1}{2}})\\\\)</span> pairwise disjoint edges and a plane cycle (and hence path) of length <span>\\\\(\\\\Omega (\\\\frac{\\\\log n }{\\\\log \\\\log n})\\\\)</span>. Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing <i>D</i> is c-monotone if there exists a point <i>O</i> such that no edge of <i>D</i> is crossed more than once by any ray that emanates from <i>O</i> and passes through a vertex of <i>D</i>.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00610-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00610-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

简易绘图是指图中的边是约旦弧,每对边最多共享一个点(一个适当的交叉点或一个共同的端点)的绘图。如果存在一个点 O,使得从 O 出发的每条射线最多与图中的每条边相交一次,那么简单图就是 c-monotone 图。我们引入一种特殊的 c-monotone 绘图,称之为广义扭曲绘图。如果有一条从 O 出发的射线穿过图中的所有边,那么该 c 单调图就是广义扭曲图。通过这一类图,我们证明了具有 n 个顶点的完整图的每一个简单图都包含 \(\Omega (n^{\frac{1}{2}})\) 条成对不相交的边和一个长度为 \(\Omega (\frac{log n }{log \log n})\)的平面循环(以及路径)。这两个结果都比之前公布的最佳下限有所提高。在此过程中,我们展示了广义扭曲图和 c 单调图的一些结构性结果和性质,我们认为其中一些结果和性质具有独立的意义。例如,我们证明,如果存在一个点 O,使得 D 的任何边都不会被任何从 O 出发并经过 D 的顶点的射线穿过一次以上,那么绘图 D 就是 c-monotone 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point O such that each ray emanating from O crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from O that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with n vertices contains \(\Omega (n^{\frac{1}{2}})\) pairwise disjoint edges and a plane cycle (and hence path) of length \(\Omega (\frac{\log n }{\log \log n})\). Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing D is c-monotone if there exists a point O such that no edge of D is crossed more than once by any ray that emanates from O and passes through a vertex of D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信