Yixuan Zhang, Basem Suleiman, Muhammad Johan Alibasa, Farnaz Farid
{"title":"使用 FedGroup 在物联网环境中进行隐私意识异常检测:基于群组的联合学习方法","authors":"Yixuan Zhang, Basem Suleiman, Muhammad Johan Alibasa, Farnaz Farid","doi":"10.1007/s10922-023-09782-9","DOIUrl":null,"url":null,"abstract":"<p>The popularity of Internet of Things (IoT) devices in smart homes has raised significant concerns regarding data security and privacy. Traditional machine learning (ML) methods for anomaly detection often require sharing sensitive IoT data with a central server, posing security and efficiency challenges. In response, this paper introduces FedGroup, a novel Federated Learning (FL) method inspired by FedAvg. FedGroup revolutionizes the central model’s learning process by updating it based on the learning patterns of distinct groups of IoT devices. Our experimental results demonstrate that FedGroup consistently achieves comparable or superior accuracy in anomaly detection when compared to both federated and non-federated learning methods. Additionally, Ensemble Learning (EL) collects intelligence from numerous contributing models, leading to enhanced prediction performance. Furthermore, FedGroup significantly improves the detection of attack types and their details, contributing to a more robust security framework for smart homes. Our approach demonstrates exceptional performance, achieving an accuracy rate of 99.64% with a minimal false positive rate (FPR) of 0.02% in attack type detection, and an impressive 99.89% accuracy in attack type detail detection.\n</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"9 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-Aware Anomaly Detection in IoT Environments using FedGroup: A Group-Based Federated Learning Approach\",\"authors\":\"Yixuan Zhang, Basem Suleiman, Muhammad Johan Alibasa, Farnaz Farid\",\"doi\":\"10.1007/s10922-023-09782-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The popularity of Internet of Things (IoT) devices in smart homes has raised significant concerns regarding data security and privacy. Traditional machine learning (ML) methods for anomaly detection often require sharing sensitive IoT data with a central server, posing security and efficiency challenges. In response, this paper introduces FedGroup, a novel Federated Learning (FL) method inspired by FedAvg. FedGroup revolutionizes the central model’s learning process by updating it based on the learning patterns of distinct groups of IoT devices. Our experimental results demonstrate that FedGroup consistently achieves comparable or superior accuracy in anomaly detection when compared to both federated and non-federated learning methods. Additionally, Ensemble Learning (EL) collects intelligence from numerous contributing models, leading to enhanced prediction performance. Furthermore, FedGroup significantly improves the detection of attack types and their details, contributing to a more robust security framework for smart homes. Our approach demonstrates exceptional performance, achieving an accuracy rate of 99.64% with a minimal false positive rate (FPR) of 0.02% in attack type detection, and an impressive 99.89% accuracy in attack type detail detection.\\n</p>\",\"PeriodicalId\":50119,\"journal\":{\"name\":\"Journal of Network and Systems Management\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Systems Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10922-023-09782-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-023-09782-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Privacy-Aware Anomaly Detection in IoT Environments using FedGroup: A Group-Based Federated Learning Approach
The popularity of Internet of Things (IoT) devices in smart homes has raised significant concerns regarding data security and privacy. Traditional machine learning (ML) methods for anomaly detection often require sharing sensitive IoT data with a central server, posing security and efficiency challenges. In response, this paper introduces FedGroup, a novel Federated Learning (FL) method inspired by FedAvg. FedGroup revolutionizes the central model’s learning process by updating it based on the learning patterns of distinct groups of IoT devices. Our experimental results demonstrate that FedGroup consistently achieves comparable or superior accuracy in anomaly detection when compared to both federated and non-federated learning methods. Additionally, Ensemble Learning (EL) collects intelligence from numerous contributing models, leading to enhanced prediction performance. Furthermore, FedGroup significantly improves the detection of attack types and their details, contributing to a more robust security framework for smart homes. Our approach demonstrates exceptional performance, achieving an accuracy rate of 99.64% with a minimal false positive rate (FPR) of 0.02% in attack type detection, and an impressive 99.89% accuracy in attack type detail detection.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.