具有片状 Lipschitz 连续漂移系数的 SDE 强逼近的尖锐误差下限

IF 1.8 2区 数学 Q1 MATHEMATICS
Simon Ellinger
{"title":"具有片状 Lipschitz 连续漂移系数的 SDE 强逼近的尖锐误差下限","authors":"Simon Ellinger","doi":"10.1016/j.jco.2023.101822","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all </span><span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> a transformed Milstein-type scheme reaches an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span><span>-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While </span>boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient\",\"authors\":\"Simon Ellinger\",\"doi\":\"10.1016/j.jco.2023.101822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all </span><span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> a transformed Milstein-type scheme reaches an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span><span>-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While </span>boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.</span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000912\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000912","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是在漂移系数不连续的情况下,标量随机微分方程(SDE)的强解在单一时间的路径近似。最近,Müller-Gronbach 和 Yaroslavtseva(2022 年)证明,对于所有 p∈[1,∞],当漂移系数是一个具有片断 Lipschitz-continuous 导数的片断 Lipschitz-continuous 函数,且扩散系数为常数时,变换后的 Milstein-type 方案的 Lp 误差率至少为 3/4。Müller-Gronbach 和 Yaroslavtseva(2023 年)已经证明,如果再假设漂移系数是有界的、递增的并且有一个不连续点,那么这个误差率 3/4 是最佳的。虽然漂移系数的有界性和单调性对于证明 Müller-Gronbach 和 Yaroslavtseva(2023)的匹配下限至关重要,但我们证明这两个条件都可以放弃。为了证明这一点,我们采用了迄今为止只用于获得上界的变换技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient

We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all p[1,) a transformed Milstein-type scheme reaches an Lp-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信