通过量子化从投影表示到五角同调

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Victor Gayral, Valentin Marie
{"title":"通过量子化从投影表示到五角同调","authors":"Victor Gayral,&nbsp;Valentin Marie","doi":"10.1007/s11005-023-01754-z","DOIUrl":null,"url":null,"abstract":"<div><p>Given a locally compact group <span>\\(G=Q &lt; imes V\\)</span> such that <i>V</i> is Abelian and such that the action of <i>Q</i> on the Pontryagin dual <span>\\({\\hat{V}}\\)</span> has a free orbit of full measure, we construct a family of unitary dual 2-cocycles <span>\\(\\Omega _\\omega \\)</span> (aka non-formal Drinfel’d twists) whose equivalence classes <span>\\([\\Omega _\\omega ]\\in H^2({\\hat{G}},{\\mathbb {T}})\\)</span> are parametrized by cohomology classes <span>\\([\\omega ]\\in H^2(Q,{\\mathbb {T}})\\)</span>. We prove that the associated locally compact quantum groups are isomorphic to cocycle bicrossed product quantum groups associated with a pair of subgroups of the dual semidirect product <span>\\(Q &lt; imes {\\hat{V}}\\)</span>, both isomorphic to <i>Q</i>, and to a pentagonal cocycle <span>\\(\\Theta _\\omega \\)</span> explicitly given in terms of the group cocycle <span>\\(\\omega \\)</span>.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From projective representations to pentagonal cohomology via quantization\",\"authors\":\"Victor Gayral,&nbsp;Valentin Marie\",\"doi\":\"10.1007/s11005-023-01754-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a locally compact group <span>\\\\(G=Q &lt; imes V\\\\)</span> such that <i>V</i> is Abelian and such that the action of <i>Q</i> on the Pontryagin dual <span>\\\\({\\\\hat{V}}\\\\)</span> has a free orbit of full measure, we construct a family of unitary dual 2-cocycles <span>\\\\(\\\\Omega _\\\\omega \\\\)</span> (aka non-formal Drinfel’d twists) whose equivalence classes <span>\\\\([\\\\Omega _\\\\omega ]\\\\in H^2({\\\\hat{G}},{\\\\mathbb {T}})\\\\)</span> are parametrized by cohomology classes <span>\\\\([\\\\omega ]\\\\in H^2(Q,{\\\\mathbb {T}})\\\\)</span>. We prove that the associated locally compact quantum groups are isomorphic to cocycle bicrossed product quantum groups associated with a pair of subgroups of the dual semidirect product <span>\\\\(Q &lt; imes {\\\\hat{V}}\\\\)</span>, both isomorphic to <i>Q</i>, and to a pentagonal cocycle <span>\\\\(\\\\Theta _\\\\omega \\\\)</span> explicitly given in terms of the group cocycle <span>\\\\(\\\\omega \\\\)</span>.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-023-01754-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-023-01754-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

给定一个局部紧密群(G=Q <;({\hat{V}}\)有一个全度量的自由轨道、我们构建了一个单元对偶 2-Cocycles \(\Omega_\omega\)族(又名非形式德林费尔德扭曲),其等价类 \([\Omega _\omega ]\in H^2({\hat{G}}、{)是由同调类 \([\omega ]\in H^2(Q,{\mathbb {T}}))参数化的。我们证明,相关的局部紧凑量子群与与对偶半直接积 \(Q < imes {\hat{V}}\) 的一对子群相关的环双交积量子群同构,两者都与 Q 同构,并且与明确给出的群环 \(\omega \) 的五边形环同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From projective representations to pentagonal cohomology via quantization

Given a locally compact group \(G=Q < imes V\) such that V is Abelian and such that the action of Q on the Pontryagin dual \({\hat{V}}\) has a free orbit of full measure, we construct a family of unitary dual 2-cocycles \(\Omega _\omega \) (aka non-formal Drinfel’d twists) whose equivalence classes \([\Omega _\omega ]\in H^2({\hat{G}},{\mathbb {T}})\) are parametrized by cohomology classes \([\omega ]\in H^2(Q,{\mathbb {T}})\). We prove that the associated locally compact quantum groups are isomorphic to cocycle bicrossed product quantum groups associated with a pair of subgroups of the dual semidirect product \(Q < imes {\hat{V}}\), both isomorphic to Q, and to a pentagonal cocycle \(\Theta _\omega \) explicitly given in terms of the group cocycle \(\omega \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信