迈向π-激进的巴尔-铃木锐定理:小等级的特殊群

IF 0.4 3区 数学 Q4 LOGIC
Zh. Wang, W. Guo, D. O. Revin
{"title":"迈向π-激进的巴尔-铃木锐定理:小等级的特殊群","authors":"Zh. Wang,&nbsp;W. Guo,&nbsp;D. O. Revin","doi":"10.1007/s10469-023-09720-3","DOIUrl":null,"url":null,"abstract":"<p>Let π be a proper subset of the set of all prime numbers. Denote by <i>r</i> the least prime number not in π, and put <i>m</i> = <i>r</i>, if <i>r</i> = 2, 3, and m = <i>r</i> − 1 if <i>r</i> ≥ 5. We look at the conjecture that a conjugacy class <i>D</i> in a finite group <i>G</i> generates a π-subgroup in <i>G</i> (or, equivalently, is contained in the π-radical) iff any m elements from <i>D</i> generate a π-group. Previously, this conjecture was confirmed for finite groups whose every non-Abelian composition factor is isomorphic to a sporadic, alternating, linear or unitary simple group. Now it is confirmed for groups the list of composition factors of which is added up by exceptional groups of Lie type <sup>2</sup><i>B</i><sub>2</sub>(<i>q</i>), <sup>2</sup><i>G</i><sub>2</sub>(<i>q</i>), <i>G</i><sub>2</sub>(<i>q</i>), and <sup>3</sup><i>D</i><sub>4</sub>(<i>q</i>).</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Exceptional Groups of Small Rank\",\"authors\":\"Zh. Wang,&nbsp;W. Guo,&nbsp;D. O. Revin\",\"doi\":\"10.1007/s10469-023-09720-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let π be a proper subset of the set of all prime numbers. Denote by <i>r</i> the least prime number not in π, and put <i>m</i> = <i>r</i>, if <i>r</i> = 2, 3, and m = <i>r</i> − 1 if <i>r</i> ≥ 5. We look at the conjecture that a conjugacy class <i>D</i> in a finite group <i>G</i> generates a π-subgroup in <i>G</i> (or, equivalently, is contained in the π-radical) iff any m elements from <i>D</i> generate a π-group. Previously, this conjecture was confirmed for finite groups whose every non-Abelian composition factor is isomorphic to a sporadic, alternating, linear or unitary simple group. Now it is confirmed for groups the list of composition factors of which is added up by exceptional groups of Lie type <sup>2</sup><i>B</i><sub>2</sub>(<i>q</i>), <sup>2</sup><i>G</i><sub>2</sub>(<i>q</i>), <i>G</i><sub>2</sub>(<i>q</i>), and <sup>3</sup><i>D</i><sub>4</sub>(<i>q</i>).</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-023-09720-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09720-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

设 π 是所有素数集合的一个适当子集。用 r 表示不在π中的最小素数,如果 r = 2,3,则设 m = r,如果 r ≥ 5,则设 m = r - 1。我们研究这样一个猜想:如果 D 中的任意 m 个元素生成一个π群,那么有限群 G 中的共轭类 D 就会在 G 中生成一个π子群(或者,等价地,包含在π激元中)。在此之前,这一猜想是在有限群中得到证实的,这些群中的每个非阿贝尔组成因子都与零星群、交替群、线性群或单元简单群同构。现在,这个猜想对于由列类型为 2B2(q)、2G2(q)、G2(q) 和 3D4(q) 的特殊群相加而成的群也得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Exceptional Groups of Small Rank

Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Exceptional Groups of Small Rank

Toward a Sharp Baer–Suzuki Theorem for the π-Radical: Exceptional Groups of Small Rank

Let π be a proper subset of the set of all prime numbers. Denote by r the least prime number not in π, and put m = r, if r = 2, 3, and m = r − 1 if r ≥ 5. We look at the conjecture that a conjugacy class D in a finite group G generates a π-subgroup in G (or, equivalently, is contained in the π-radical) iff any m elements from D generate a π-group. Previously, this conjecture was confirmed for finite groups whose every non-Abelian composition factor is isomorphic to a sporadic, alternating, linear or unitary simple group. Now it is confirmed for groups the list of composition factors of which is added up by exceptional groups of Lie type 2B2(q), 2G2(q), G2(q), and 3D4(q).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信