延迟对人类运动协调 HKB 模型的影响

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
L. I. Allen, T. G. Molnár, Z. Dombóvári, S. J. Hogan
{"title":"延迟对人类运动协调 HKB 模型的影响","authors":"L. I. Allen, T. G. Molnár, Z. Dombóvári, S. J. Hogan","doi":"10.1137/22m1531518","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 1-25, March 2024. <br/> Abstract. In this paper, we analyze the celebrated Haken–Kelso–Bunz model, describing the dynamics of bimanual coordination, in the presence of delay. We study the linear dynamics, stability, nonlinear behavior, and bifurcations of this model by both theoretical and numerical analysis. We calculate in-phase and antiphase limit cycles as well as quasi-periodic solutions via double Hopf bifurcation analysis and center manifold reduction. Moreover, we uncover further details on the global dynamic behavior by numerical continuation, including the occurrence of limit cycles in phase quadrature and 1-1 locking of quasi-periodic solutions.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Delay on the HKB Model of Human Motor Coordination\",\"authors\":\"L. I. Allen, T. G. Molnár, Z. Dombóvári, S. J. Hogan\",\"doi\":\"10.1137/22m1531518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 1-25, March 2024. <br/> Abstract. In this paper, we analyze the celebrated Haken–Kelso–Bunz model, describing the dynamics of bimanual coordination, in the presence of delay. We study the linear dynamics, stability, nonlinear behavior, and bifurcations of this model by both theoretical and numerical analysis. We calculate in-phase and antiphase limit cycles as well as quasi-periodic solutions via double Hopf bifurcation analysis and center manifold reduction. Moreover, we uncover further details on the global dynamic behavior by numerical continuation, including the occurrence of limit cycles in phase quadrature and 1-1 locking of quasi-periodic solutions.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1531518\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1531518","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 1 期第 1-25 页,2024 年 3 月。 摘要在本文中,我们分析了著名的 Haken-Kelso-Bunz 模型,该模型描述了存在延迟的双臂协调动力学。我们通过理论和数值分析研究了该模型的线性动力学、稳定性、非线性行为和分岔。我们通过双霍普夫分岔分析和中心流形还原计算了同相和反相极限循环以及准周期解。此外,我们还通过数值延续揭示了全局动态行为的更多细节,包括相位正交极限循环的出现和准周期解的 1-1 锁定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Delay on the HKB Model of Human Motor Coordination
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 1-25, March 2024.
Abstract. In this paper, we analyze the celebrated Haken–Kelso–Bunz model, describing the dynamics of bimanual coordination, in the presence of delay. We study the linear dynamics, stability, nonlinear behavior, and bifurcations of this model by both theoretical and numerical analysis. We calculate in-phase and antiphase limit cycles as well as quasi-periodic solutions via double Hopf bifurcation analysis and center manifold reduction. Moreover, we uncover further details on the global dynamic behavior by numerical continuation, including the occurrence of limit cycles in phase quadrature and 1-1 locking of quasi-periodic solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信