AC-IQuAD:利用维基数据自动构建印尼语问题解答数据集

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kerenza Doxolodeo, Adila Alfa Krisnadhi
{"title":"AC-IQuAD:利用维基数据自动构建印尼语问题解答数据集","authors":"Kerenza Doxolodeo, Adila Alfa Krisnadhi","doi":"10.1007/s10579-023-09702-y","DOIUrl":null,"url":null,"abstract":"<p>Constructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions. It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues due to resource constraints.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"21 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata\",\"authors\":\"Kerenza Doxolodeo, Adila Alfa Krisnadhi\",\"doi\":\"10.1007/s10579-023-09702-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions. It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues due to resource constraints.</p>\",\"PeriodicalId\":49927,\"journal\":{\"name\":\"Language Resources and Evaluation\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Resources and Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10579-023-09702-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-023-09702-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

构建一个问题解答数据集的成本过高,这使得研究人员很难为资源不足的语言(如印尼语)创建一个数据集。我们创建了一个端到端自动生成的新型印尼语答题数据集。该过程使用了上下文自由语法、维基百科印尼语语料库和代理模型概念。该数据集包括 13.4 万个简单问题和 6 万个复杂问题。与翻译过的数据集相比,该数据集的语法和模型准确率都很有竞争力,但由于资源限制,也存在一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata

AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata

Constructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions. It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues due to resource constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Language Resources and Evaluation
Language Resources and Evaluation 工程技术-计算机:跨学科应用
CiteScore
6.50
自引率
3.70%
发文量
55
审稿时长
>12 weeks
期刊介绍: Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications. Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use. Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信