R. Dhanagopal, R. Menaka, R. Suresh Kumar, P. T. Vasanth Raj, E. L. Debrah, K. Pradeep
{"title":"基于通道增强和迁移学习卷积神经网络的 CT 扫描、双 X 光和 X 光图像骨质疏松症检测","authors":"R. Dhanagopal, R. Menaka, R. Suresh Kumar, P. T. Vasanth Raj, E. L. Debrah, K. Pradeep","doi":"10.1155/2024/3733705","DOIUrl":null,"url":null,"abstract":"Osteoporosis is a word used to describe a condition in which bone density has been diminished as a result of inadequate bone tissue development to counteract the elimination of old bone tissue. Osteoporosis diagnosis is made possible by the use of medical imaging technologies such as CT scans, dual X-ray, and X-ray images. In practice, there are various osteoporosis diagnostic methods that may be performed with a single imaging modality to aid in the diagnosis of the disease. The proposed study is to develop a framework, that is, to aid in the diagnosis of osteoporosis which agrees to all of these CT scans, X-ray, and dual X-ray imaging modalities. The framework will be implemented in the near future. The proposed work, CBTCNNOD, is the integration of 3 functional modules. The functional modules are a bilinear filter, grey-level zone length matrix, and CB-CNN. It is constructed in a manner that can provide crisp osteoporosis diagnostic reports based on the images that are fed into the system. All 3 modules work together to improve the performance of the proposed approach, CBTCNNOD, in terms of accuracy by 10.38%, 10.16%, 7.86%, and 14.32%; precision by 11.09%, 9.08%, 10.01%, and 16.51%; sensitivity by 9.77%, 10.74%, 6.20%, and 12.78%; and specificity by 11.01%, 9.52%, 9.5%, and 15.84%, while requiring less processing time of 33.52%, 17.79%, 23.34%, and 10.86%, when compared to the existing techniques of RCETA, BMCOFA, BACBCT, and XSFCV, respectively.","PeriodicalId":16017,"journal":{"name":"Journal of Healthcare Engineering","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel-Boosted and Transfer Learning Convolutional Neural Network-Based Osteoporosis Detection from CT Scan, Dual X-Ray, and X-Ray Images\",\"authors\":\"R. Dhanagopal, R. Menaka, R. Suresh Kumar, P. T. Vasanth Raj, E. L. Debrah, K. Pradeep\",\"doi\":\"10.1155/2024/3733705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoporosis is a word used to describe a condition in which bone density has been diminished as a result of inadequate bone tissue development to counteract the elimination of old bone tissue. Osteoporosis diagnosis is made possible by the use of medical imaging technologies such as CT scans, dual X-ray, and X-ray images. In practice, there are various osteoporosis diagnostic methods that may be performed with a single imaging modality to aid in the diagnosis of the disease. The proposed study is to develop a framework, that is, to aid in the diagnosis of osteoporosis which agrees to all of these CT scans, X-ray, and dual X-ray imaging modalities. The framework will be implemented in the near future. The proposed work, CBTCNNOD, is the integration of 3 functional modules. The functional modules are a bilinear filter, grey-level zone length matrix, and CB-CNN. It is constructed in a manner that can provide crisp osteoporosis diagnostic reports based on the images that are fed into the system. All 3 modules work together to improve the performance of the proposed approach, CBTCNNOD, in terms of accuracy by 10.38%, 10.16%, 7.86%, and 14.32%; precision by 11.09%, 9.08%, 10.01%, and 16.51%; sensitivity by 9.77%, 10.74%, 6.20%, and 12.78%; and specificity by 11.01%, 9.52%, 9.5%, and 15.84%, while requiring less processing time of 33.52%, 17.79%, 23.34%, and 10.86%, when compared to the existing techniques of RCETA, BMCOFA, BACBCT, and XSFCV, respectively.\",\"PeriodicalId\":16017,\"journal\":{\"name\":\"Journal of Healthcare Engineering\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3733705\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/3733705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Channel-Boosted and Transfer Learning Convolutional Neural Network-Based Osteoporosis Detection from CT Scan, Dual X-Ray, and X-Ray Images
Osteoporosis is a word used to describe a condition in which bone density has been diminished as a result of inadequate bone tissue development to counteract the elimination of old bone tissue. Osteoporosis diagnosis is made possible by the use of medical imaging technologies such as CT scans, dual X-ray, and X-ray images. In practice, there are various osteoporosis diagnostic methods that may be performed with a single imaging modality to aid in the diagnosis of the disease. The proposed study is to develop a framework, that is, to aid in the diagnosis of osteoporosis which agrees to all of these CT scans, X-ray, and dual X-ray imaging modalities. The framework will be implemented in the near future. The proposed work, CBTCNNOD, is the integration of 3 functional modules. The functional modules are a bilinear filter, grey-level zone length matrix, and CB-CNN. It is constructed in a manner that can provide crisp osteoporosis diagnostic reports based on the images that are fed into the system. All 3 modules work together to improve the performance of the proposed approach, CBTCNNOD, in terms of accuracy by 10.38%, 10.16%, 7.86%, and 14.32%; precision by 11.09%, 9.08%, 10.01%, and 16.51%; sensitivity by 9.77%, 10.74%, 6.20%, and 12.78%; and specificity by 11.01%, 9.52%, 9.5%, and 15.84%, while requiring less processing time of 33.52%, 17.79%, 23.34%, and 10.86%, when compared to the existing techniques of RCETA, BMCOFA, BACBCT, and XSFCV, respectively.
期刊介绍:
The Journal of Healthcare Engineering is a peer-reviewed, Open Access journal publishing fundamental and applied research on all aspects of engineering involved in healthcare delivery processes and systems. It provides a vehicle for the exchange of advanced knowledge, emerging technologies, and innovative ideas among healthcare engineering researchers, engineers, managers, and consultants around the world.
The journal encompasses biomedical engineering (devices, equipment, procedures, and software), healthcare information technology, distance healthcare, healthcare facilities and infrastructure, healthcare environment management, improvement of healthcare delivery systems, healthcare safety, elderly care, public health and epidemiology, healthcare policy and social issues. Authors are encouraged to submit papers based on analytical, computational, experimental, and clinical research; state-of-the-art reviews; conceptual and theoretical developments and designs.