Huaping Zhou , Tao Wu , Senmao Ye , Xinru Qin , Kelei Sun
{"title":"通过文本聚合和连接融合模块,从文本描述中加强精细图像合成","authors":"Huaping Zhou , Tao Wu , Senmao Ye , Xinru Qin , Kelei Sun","doi":"10.1016/j.image.2023.117099","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Synthesizing images with fine details from text descriptions is a challenge. The existing single-stage generative adversarial networks<span> (GANs) fuse sentence features into the image generation process through affine transformation, which alleviate the problems of missing details and large computation from stacked networks. However, existing single-stage networks ignore the word features in the text description, resulting in a lack of detail in the generated image. To address this issue, we proposed a text aggregation module (TAM) to fuse sentence features and word features in a text by a simple spatial </span></span>attention mechanism. Then we built a text connection fusion (TCF) block consisting mainly of gated </span>recurrent<span> unit (GRU) and up-sampled block. It can connect text features used in the up-sampled blocks to improve text utilization. Besides, to further improve the semantic consistency between text and the generated images, we introduce the deep attentional multimodal similarity model (DAMSM) loss, which monitors the similarity between text and improves semantic consistency. Experimental results prove that our method is superior to the state-of-the-art models on the CUB and COCO datasets, regarding both image fidelity and semantic consistency with the text.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"122 ","pages":"Article 117099"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing fine-detail image synthesis from text descriptions by text aggregation and connection fusion module\",\"authors\":\"Huaping Zhou , Tao Wu , Senmao Ye , Xinru Qin , Kelei Sun\",\"doi\":\"10.1016/j.image.2023.117099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Synthesizing images with fine details from text descriptions is a challenge. The existing single-stage generative adversarial networks<span> (GANs) fuse sentence features into the image generation process through affine transformation, which alleviate the problems of missing details and large computation from stacked networks. However, existing single-stage networks ignore the word features in the text description, resulting in a lack of detail in the generated image. To address this issue, we proposed a text aggregation module (TAM) to fuse sentence features and word features in a text by a simple spatial </span></span>attention mechanism. Then we built a text connection fusion (TCF) block consisting mainly of gated </span>recurrent<span> unit (GRU) and up-sampled block. It can connect text features used in the up-sampled blocks to improve text utilization. Besides, to further improve the semantic consistency between text and the generated images, we introduce the deep attentional multimodal similarity model (DAMSM) loss, which monitors the similarity between text and improves semantic consistency. Experimental results prove that our method is superior to the state-of-the-art models on the CUB and COCO datasets, regarding both image fidelity and semantic consistency with the text.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"122 \",\"pages\":\"Article 117099\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001819\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001819","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing fine-detail image synthesis from text descriptions by text aggregation and connection fusion module
Synthesizing images with fine details from text descriptions is a challenge. The existing single-stage generative adversarial networks (GANs) fuse sentence features into the image generation process through affine transformation, which alleviate the problems of missing details and large computation from stacked networks. However, existing single-stage networks ignore the word features in the text description, resulting in a lack of detail in the generated image. To address this issue, we proposed a text aggregation module (TAM) to fuse sentence features and word features in a text by a simple spatial attention mechanism. Then we built a text connection fusion (TCF) block consisting mainly of gated recurrent unit (GRU) and up-sampled block. It can connect text features used in the up-sampled blocks to improve text utilization. Besides, to further improve the semantic consistency between text and the generated images, we introduce the deep attentional multimodal similarity model (DAMSM) loss, which monitors the similarity between text and improves semantic consistency. Experimental results prove that our method is superior to the state-of-the-art models on the CUB and COCO datasets, regarding both image fidelity and semantic consistency with the text.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.