{"title":"论简单仿射半群环的深度","authors":"Raheleh Jafari, Ignacio Ojeda","doi":"10.1007/s13348-023-00424-6","DOIUrl":null,"url":null,"abstract":"<p>We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the depth of simplicial affine semigroup rings\",\"authors\":\"Raheleh Jafari, Ignacio Ojeda\",\"doi\":\"10.1007/s13348-023-00424-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00424-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00424-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.
期刊介绍:
Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.