论简单仿射半群环的深度

IF 0.7 2区 数学 Q2 MATHEMATICS
Raheleh Jafari, Ignacio Ojeda
{"title":"论简单仿射半群环的深度","authors":"Raheleh Jafari, Ignacio Ojeda","doi":"10.1007/s13348-023-00424-6","DOIUrl":null,"url":null,"abstract":"<p>We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the depth of simplicial affine semigroup rings\",\"authors\":\"Raheleh Jafari, Ignacio Ojeda\",\"doi\":\"10.1007/s13348-023-00424-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00424-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00424-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾并深入研究了仿射半群环深度的不同特征,提供了三维和四维情况下深度二的原始特征,这与某些阿佩里集合中最大元素的存在密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the depth of simplicial affine semigroup rings

On the depth of simplicial affine semigroup rings

We recall and delve into the different characterizations of the depth of an affine semigroup ring, providing an original characterization of depth two in three and four dimensional cases which are closely related to the existence of a maximal element in certain Apéry sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信