含高阶项的反应-扩散-平流方程的行波速度选择

IF 1.9 3区 数学 Q1 MATHEMATICS
Chaohong Pan, Shulin Hu, Hongyong Wang
{"title":"含高阶项的反应-扩散-平流方程的行波速度选择","authors":"Chaohong Pan, Shulin Hu, Hongyong Wang","doi":"10.1007/s12346-023-00923-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the speed selection mechanism of traveling wave solutions for a reaction–diffusion–advection equation with high-order terms in a cylindrical domain. The study focuses the problem under two cases for Neumann boundary condition and Dirichlet boundary condition. By using the upper and lower solutions method, general conditions for both linear and nonlinear selections are obtained. When the equation is expanded to higher dimensions, literature examining this particular topic is scarce. In light of this, new results have been obtained for both linear and nonlinear speed selections of the equation with high-order terms. For different power exponents m and n, specific sufficient conditions for linear and nonlinear selections with the minimal wave speed are derived by selecting suitable upper and lower solutions. The impact of the power exponents m and n on speed selection is analyzed.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"11 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Selection of Traveling Waves of a Reaction–Diffusion–Advection Equation with High-Order Terms\",\"authors\":\"Chaohong Pan, Shulin Hu, Hongyong Wang\",\"doi\":\"10.1007/s12346-023-00923-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the speed selection mechanism of traveling wave solutions for a reaction–diffusion–advection equation with high-order terms in a cylindrical domain. The study focuses the problem under two cases for Neumann boundary condition and Dirichlet boundary condition. By using the upper and lower solutions method, general conditions for both linear and nonlinear selections are obtained. When the equation is expanded to higher dimensions, literature examining this particular topic is scarce. In light of this, new results have been obtained for both linear and nonlinear speed selections of the equation with high-order terms. For different power exponents m and n, specific sufficient conditions for linear and nonlinear selections with the minimal wave speed are derived by selecting suitable upper and lower solutions. The impact of the power exponents m and n on speed selection is analyzed.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-023-00923-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00923-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了圆柱域中带有高阶项的反应-扩散-对流方程的行波解的速度选择机制。研究集中于 Neumann 边界条件和 Dirichlet 边界条件两种情况下的问题。通过使用上解和下解法,得到了线性和非线性选择的一般条件。当方程扩展到更高维度时,研究这一特定主题的文献很少。有鉴于此,我们获得了带有高阶项的方程线性和非线性速度选择的新结果。对于不同的功率指数 m 和 n,通过选择合适的上解和下解,得出了具有最小波速的线性和非线性选择的具体充分条件。分析了功率指数 m 和 n 对速度选择的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed Selection of Traveling Waves of a Reaction–Diffusion–Advection Equation with High-Order Terms

In this paper, we investigate the speed selection mechanism of traveling wave solutions for a reaction–diffusion–advection equation with high-order terms in a cylindrical domain. The study focuses the problem under two cases for Neumann boundary condition and Dirichlet boundary condition. By using the upper and lower solutions method, general conditions for both linear and nonlinear selections are obtained. When the equation is expanded to higher dimensions, literature examining this particular topic is scarce. In light of this, new results have been obtained for both linear and nonlinear speed selections of the equation with high-order terms. For different power exponents m and n, specific sufficient conditions for linear and nonlinear selections with the minimal wave speed are derived by selecting suitable upper and lower solutions. The impact of the power exponents m and n on speed selection is analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信