根据物理参数对二维张量 ESPRIT 进行分析性能评估

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Damir Rakhimov;Martin Haardt
{"title":"根据物理参数对二维张量 ESPRIT 进行分析性能评估","authors":"Damir Rakhimov;Martin Haardt","doi":"10.1109/OJSP.2023.3337729","DOIUrl":null,"url":null,"abstract":"In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. We show that the error in the \n<inline-formula><tex-math>$r$</tex-math></inline-formula>\n-mode depends only on two components, irrespective of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices, the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The derived expressions allow a better understanding of the difference in performance between the tensor and the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of each of the two error components in different scenarios.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"122-131"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334446","citationCount":"0","resultStr":"{\"title\":\"Analytical Performance Assessment of 2-D Tensor ESPRIT in Terms of Physical Parameters\",\"authors\":\"Damir Rakhimov;Martin Haardt\",\"doi\":\"10.1109/OJSP.2023.3337729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. We show that the error in the \\n<inline-formula><tex-math>$r$</tex-math></inline-formula>\\n-mode depends only on two components, irrespective of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices, the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The derived expressions allow a better understanding of the difference in performance between the tensor and the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of each of the two error components in different scenarios.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"122-131\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334446\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334446/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10334446/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们根据物理参数对 2-D 张量 ESPRIT 的性能进行了分析评估。我们证明,无论问题的维度如何,r$模式下的误差只取决于两个分量。我们得到了各维度均方误差(MSE)的封闭式分析表达式,它是信噪比(SNR)、阵列转向矩阵、天线数量、快照数量、选择矩阵和信号相关性的函数。通过推导出的表达式,可以更好地理解张量版和矩阵版 ESPRIT 算法在性能上的差异。模拟结果证实了所提出的分析表达式与通过蒙特卡罗试验获得的曲线之间的一致性。我们分析了两种误差成分在不同情况下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Performance Assessment of 2-D Tensor ESPRIT in Terms of Physical Parameters
In this paper, we present an analytical performance assessment of 2-D Tensor ESPRIT in terms of physical parameters. We show that the error in the $r$ -mode depends only on two components, irrespective of the dimensionality of the problem. We obtain analytical expressions in closed form for the mean squared error (MSE) in each dimension as a function of the signal-to-noise (SNR) ratio, the array steering matrices, the number of antennas, the number of snapshots, the selection matrices, and the signal correlation. The derived expressions allow a better understanding of the difference in performance between the tensor and the matrix versions of the ESPRIT algorithm. The simulation results confirm the coincidence between the presented analytical expression and the curves obtained via Monte Carlo trials. We analyze the behavior of each of the two error components in different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信