近似具有考奇型奇点的振荡贝塞尔积分的新算法

IF 1.4 Q2 MATHEMATICS, APPLIED
Qinghua Wu, Mengjun Sun
{"title":"近似具有考奇型奇点的振荡贝塞尔积分的新算法","authors":"Qinghua Wu,&nbsp;Mengjun Sun","doi":"10.1016/j.rinam.2023.100422","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100422"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000687/pdfft?md5=9eba8a4e8b011495027e39211e5cd051&pid=1-s2.0-S2590037423000687-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New algorithms for approximating oscillatory Bessel integrals with Cauchy-type singularities\",\"authors\":\"Qinghua Wu,&nbsp;Mengjun Sun\",\"doi\":\"10.1016/j.rinam.2023.100422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100422\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000687/pdfft?md5=9eba8a4e8b011495027e39211e5cd051&pid=1-s2.0-S2590037423000687-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种高效的数值算法,用于逼近具有考奇型奇点的高振荡贝塞尔函数积分。通过使用复线积分技术,高度振荡贝塞尔积分被转化为具有傅里叶核的振荡积分。当积分区间不包含零点时,我们利用柯西定理将积分路径转换到复平面,然后利用高斯-拉盖尔公式计算积分。对于积分区间包含零点的情况,我们将积分分解为两部分:普通积分和奇异积分。对于常积分,我们给出了基于切比雪夫多项式和贝塞尔函数的稳定递推公式。对于奇异积分,我们利用 MeijerG 函数进行高效计算。数值示例验证了新算法的有效性和快速收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New algorithms for approximating oscillatory Bessel integrals with Cauchy-type singularities

In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信