利用分数阶激活函数增强神经网络分类功能

Meshach Kumar , Utkal Mehta , Giansalvo Cirrincione
{"title":"利用分数阶激活函数增强神经网络分类功能","authors":"Meshach Kumar ,&nbsp;Utkal Mehta ,&nbsp;Giansalvo Cirrincione","doi":"10.1016/j.aiopen.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a series of novel activation functions is presented, which is derived using the improved Riemann–Liouville conformable fractional derivative (<span><math><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup></math></span>CFD). This study investigates the use of fractional activation functions in Multilayer Perceptron (MLP) models and their impact on the performance of classification tasks, verified using the IRIS, MNIST and FMNIST datasets. Fractional activation functions introduce a non-integer power exponent, allowing for improved capturing of complex patterns and representations. The experiment compares MLP models employing fractional activation functions, such as fractional sigmoid, hyperbolic tangent and rectified linear units, against traditional models using standard activation functions, their improved versions and existing fractional functions. The numerical studies have confirmed the theoretical observations mentioned in the paper. The findings highlight the potential usage of new functions as a valuable tool in deep learning in classification. The study suggests incorporating fractional activation functions in MLP architectures can lead to superior accuracy and robustness.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 10-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266665102300030X/pdfft?md5=2be839945dd6c63499655950e9809539&pid=1-s2.0-S266665102300030X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing neural network classification using fractional-order activation functions\",\"authors\":\"Meshach Kumar ,&nbsp;Utkal Mehta ,&nbsp;Giansalvo Cirrincione\",\"doi\":\"10.1016/j.aiopen.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a series of novel activation functions is presented, which is derived using the improved Riemann–Liouville conformable fractional derivative (<span><math><msup><mrow></mrow><mrow><mi>R</mi><mi>L</mi></mrow></msup></math></span>CFD). This study investigates the use of fractional activation functions in Multilayer Perceptron (MLP) models and their impact on the performance of classification tasks, verified using the IRIS, MNIST and FMNIST datasets. Fractional activation functions introduce a non-integer power exponent, allowing for improved capturing of complex patterns and representations. The experiment compares MLP models employing fractional activation functions, such as fractional sigmoid, hyperbolic tangent and rectified linear units, against traditional models using standard activation functions, their improved versions and existing fractional functions. The numerical studies have confirmed the theoretical observations mentioned in the paper. The findings highlight the potential usage of new functions as a valuable tool in deep learning in classification. The study suggests incorporating fractional activation functions in MLP architectures can lead to superior accuracy and robustness.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"5 \",\"pages\":\"Pages 10-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266665102300030X/pdfft?md5=2be839945dd6c63499655950e9809539&pid=1-s2.0-S266665102300030X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266665102300030X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266665102300030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一系列新颖的激活函数,这些函数是利用改进的黎曼-刘维尔顺应分数导数(RLCFD)推导出来的。本研究探讨了分数激活函数在多层感知器(MLP)模型中的使用及其对分类任务性能的影响,并使用 IRIS、MNIST 和 FMNIST 数据集进行了验证。分数激活函数引入了一个非整数幂指数,从而改进了对复杂模式和表征的捕捉。实验将采用分数激活函数(如分数 sigmoid、双曲正切和整流线性单元)的 MLP 模型与采用标准激活函数、其改进版本和现有分数函数的传统模型进行了比较。数值研究证实了论文中提到的理论观察结果。研究结果凸显了新函数作为深度学习分类的重要工具的潜在用途。研究表明,在 MLP 架构中加入分数激活函数可以提高准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing neural network classification using fractional-order activation functions

In this paper, a series of novel activation functions is presented, which is derived using the improved Riemann–Liouville conformable fractional derivative (RLCFD). This study investigates the use of fractional activation functions in Multilayer Perceptron (MLP) models and their impact on the performance of classification tasks, verified using the IRIS, MNIST and FMNIST datasets. Fractional activation functions introduce a non-integer power exponent, allowing for improved capturing of complex patterns and representations. The experiment compares MLP models employing fractional activation functions, such as fractional sigmoid, hyperbolic tangent and rectified linear units, against traditional models using standard activation functions, their improved versions and existing fractional functions. The numerical studies have confirmed the theoretical observations mentioned in the paper. The findings highlight the potential usage of new functions as a valuable tool in deep learning in classification. The study suggests incorporating fractional activation functions in MLP architectures can lead to superior accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信