改进脑 PET 运动校正的交叉注意力。

Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey
{"title":"改进脑 PET 运动校正的交叉注意力。","authors":"Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey","doi":"10.1007/978-3-031-44858-4_4","DOIUrl":null,"url":null,"abstract":"<p><p>Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.</p>","PeriodicalId":510900,"journal":{"name":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","volume":"14312 ","pages":"34-45"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-Attention for Improved Motion Correction in Brain PET.\",\"authors\":\"Zhuotong Cai, Tianyi Zeng, Eléonore V Lieffrig, Jiazhen Zhang, Fuyao Chen, Takuya Toyonaga, Chenyu You, Jingmin Xin, Nanning Zheng, Yihuan Lu, James S Duncan, John A Onofrey\",\"doi\":\"10.1007/978-3-031-44858-4_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.</p>\",\"PeriodicalId\":510900,\"journal\":{\"name\":\"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)\",\"volume\":\"14312 \",\"pages\":\"34-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-44858-4_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44858-4_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长时间扫描过程中的头部运动会降低正电子发射计算机断层扫描(PET)的重建质量并产生伪影,从而限制临床诊断和治疗。最近基于深度学习的运动校正工作利用原始 PET 列表模式数据和硬件运动跟踪(HMT),以监督方式学习头部运动。然而,运动预测结果对训练数据域外的测试对象并不稳定。在本文中,我们将交叉注意机制整合到监督深度学习网络中,以改善跨测试对象的运动校正。具体来说,交叉注意学习参考图像和运动图像之间的空间对应关系,明确地将模型聚焦于最相关的固有信息--运动校正的头部区域。我们在两种不同扫描仪的脑 PET 数据上验证了我们的方法:不带飞行时间(ToF)的 HRRT 和带 ToF 的 mCT。与传统基准和深度学习基准相比,在 HRRT 研究的多受试者测试中,我们的网络在平移和旋转方面的运动校正性能分别提高了 58% 和 26%。在 mCT 研究中,我们的方法在平移和旋转方面的性能分别提高了 66% 和 64%。我们的研究结果表明,交叉注意有可能在不依赖 HMT 的情况下提高脑 PET 图像重建的质量。所有代码将在 GitHub 上发布:https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Attention for Improved Motion Correction in Brain PET.

Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信