Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey
{"title":"深度学习 PET 头部运动校正的快速重建。","authors":"Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey","doi":"10.1007/978-3-031-43999-5_67","DOIUrl":null,"url":null,"abstract":"<p><p>Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an <sup>18</sup>F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758999/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast Reconstruction for Deep Learning PET Head Motion Correction.\",\"authors\":\"Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey\",\"doi\":\"10.1007/978-3-031-43999-5_67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an <sup>18</sup>F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758999/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43999-5_67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43999-5_67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
头部运动校正是脑 PET 成像的重要组成部分,在这种成像中,即使是幅度很小的运动也会大大降低图像质量并引入伪影。在以往工作的基础上,我们提出了一种新的头部运动校正框架,将快速重建作为输入。该方法的主要特点是(i) 采用高分辨率短帧快速重建工作流程;(ii) 开发用于 PET 数据表示提取的新型编码器;(iii) 实施数据增强技术。进行消融研究以评估这些设计选择各自的贡献。此外,我们还对 18F-FPEB 数据集进行了多受试者研究,并通过 MOLAR 重建研究和相应的大脑感兴趣区(ROI)标准摄取值(SUV)评估,对该方法的性能进行了定性和定量评估。此外,我们还将该方法与传统的基于强度的配准方法进行了比较。结果表明,在所有受试者身上,我们提出的方法都优于其他方法,并能准确估计训练集以外受试者的运动。所有代码均可在 GitHub 上公开获取:https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023。
Fast Reconstruction for Deep Learning PET Head Motion Correction.
Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an 18F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.