使用多任务深度集合估计因果效应。

Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David Carlson
{"title":"使用多任务深度集合估计因果效应。","authors":"Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David Carlson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A number of methods have been proposed for causal effect estimation, yet few have demonstrated efficacy in handling data with complex structures, such as images. To fill this gap, we propose Causal Multi-task Deep Ensemble (CMDE), a novel framework that learns both shared and group-specific information from the study population. We provide proofs demonstrating equivalency of CDME to a multi-task Gaussian process (GP) with a coregionalization kernel <i>a priori</i>. Compared to multi-task GP, CMDE efficiently handles high-dimensional and multi-modal covariates and provides pointwise uncertainty estimates of causal effects. We evaluate our method across various types of datasets and tasks and find that CMDE outperforms state-of-the-art methods on a majority of these tasks.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"15023-15040"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating Causal Effects using a Multi-task Deep Ensemble.\",\"authors\":\"Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David Carlson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A number of methods have been proposed for causal effect estimation, yet few have demonstrated efficacy in handling data with complex structures, such as images. To fill this gap, we propose Causal Multi-task Deep Ensemble (CMDE), a novel framework that learns both shared and group-specific information from the study population. We provide proofs demonstrating equivalency of CDME to a multi-task Gaussian process (GP) with a coregionalization kernel <i>a priori</i>. Compared to multi-task GP, CMDE efficiently handles high-dimensional and multi-modal covariates and provides pointwise uncertainty estimates of causal effects. We evaluate our method across various types of datasets and tasks and find that CMDE outperforms state-of-the-art methods on a majority of these tasks.</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"202 \",\"pages\":\"15023-15040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对因果效应估计提出了很多方法,但很少有方法能有效处理图像等结构复杂的数据。为了填补这一空白,我们提出了因果多任务深度集合(CMDE),这是一种新颖的框架,可以从研究人群中学习共享信息和特定群体信息。我们提供了证明,证明 CDME 等同于带有先验核心区域化内核的多任务高斯过程(GP)。与多任务 GP 相比,CMDE 能有效处理高维和多模态协变量,并提供因果效应的点式不确定性估计。我们在各种类型的数据集和任务中对我们的方法进行了评估,发现 CMDE 在大多数任务中的表现都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Causal Effects using a Multi-task Deep Ensemble.

A number of methods have been proposed for causal effect estimation, yet few have demonstrated efficacy in handling data with complex structures, such as images. To fill this gap, we propose Causal Multi-task Deep Ensemble (CMDE), a novel framework that learns both shared and group-specific information from the study population. We provide proofs demonstrating equivalency of CDME to a multi-task Gaussian process (GP) with a coregionalization kernel a priori. Compared to multi-task GP, CMDE efficiently handles high-dimensional and multi-modal covariates and provides pointwise uncertainty estimates of causal effects. We evaluate our method across various types of datasets and tasks and find that CMDE outperforms state-of-the-art methods on a majority of these tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信