免疫浸润与泛癌症预后生物标志物 RING 手指蛋白 187 有关。

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xin-Tong Fan, Bing-Fang Gao, Xiao-Fei Wang, Kai Zhou, Ying Zhao, Jie Yuan
{"title":"免疫浸润与泛癌症预后生物标志物 RING 手指蛋白 187 有关。","authors":"Xin-Tong Fan,&nbsp;Bing-Fang Gao,&nbsp;Xiao-Fei Wang,&nbsp;Kai Zhou,&nbsp;Ying Zhao,&nbsp;Jie Yuan","doi":"10.1002/jmr.3071","DOIUrl":null,"url":null,"abstract":"<p>Cancer is associated with the highest mortality rate globally. While life-saving screening and treatments exist, better awareness is needed. RNF187, an E3 ligase regulating biological processes, belongs to the RING domain-containing E3 ligase family. RNF187 may serve as an oncogene due to abnormal expression in tumors. However, its association with immune infiltration and prognosis across various cancers remains unclear. We searched several databases including TCGA, GTE x, CCLE, TIMER, and GSEA. R software was used to evaluate RNF187 differential expression, survival, pathology stage, DNA methylation, tumor mutational burden (TMB), microsatellite instability (MSI), gene co-expression analysis, mismatch repairs (MMRs), tumor microenvironment (TME), and immune cell infiltration. Clinicopathological data were collected, and immunohistochemistry was used to verify RNF187 expression in tumor tissues. RNF187 expression was up-regulated in various cancers compared to that in normal tissues and associated with poor patient outcomes. Dysregulation of RNF187 expression in multiple cancer types was strongly correlated with DNA methylation, MMR, MSI, and TMB. RNF187 could interact with different immune cells in cancers. Biomarkers associated with RNF187 may be helpful for prognosis and immunology in treating pan-cancer patients.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immune infiltration is associated with pan-cancer prognostic biomarker RING finger protein 187\",\"authors\":\"Xin-Tong Fan,&nbsp;Bing-Fang Gao,&nbsp;Xiao-Fei Wang,&nbsp;Kai Zhou,&nbsp;Ying Zhao,&nbsp;Jie Yuan\",\"doi\":\"10.1002/jmr.3071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer is associated with the highest mortality rate globally. While life-saving screening and treatments exist, better awareness is needed. RNF187, an E3 ligase regulating biological processes, belongs to the RING domain-containing E3 ligase family. RNF187 may serve as an oncogene due to abnormal expression in tumors. However, its association with immune infiltration and prognosis across various cancers remains unclear. We searched several databases including TCGA, GTE x, CCLE, TIMER, and GSEA. R software was used to evaluate RNF187 differential expression, survival, pathology stage, DNA methylation, tumor mutational burden (TMB), microsatellite instability (MSI), gene co-expression analysis, mismatch repairs (MMRs), tumor microenvironment (TME), and immune cell infiltration. Clinicopathological data were collected, and immunohistochemistry was used to verify RNF187 expression in tumor tissues. RNF187 expression was up-regulated in various cancers compared to that in normal tissues and associated with poor patient outcomes. Dysregulation of RNF187 expression in multiple cancer types was strongly correlated with DNA methylation, MMR, MSI, and TMB. RNF187 could interact with different immune cells in cancers. Biomarkers associated with RNF187 may be helpful for prognosis and immunology in treating pan-cancer patients.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是全球死亡率最高的疾病。虽然存在挽救生命的筛查和治疗方法,但人们仍需提高对癌症的认识。RNF187是一种调节生物过程的E3连接酶,属于含RING结构域的E3连接酶家族。由于在肿瘤中的异常表达,RNF187 可能是一种致癌基因。然而,它与各种癌症的免疫浸润和预后的关系仍不清楚。我们检索了多个数据库,包括 TCGA、GTE x、CCLE、TIMER 和 GSEA。使用 R 软件评估 RNF187 差异表达、生存、病理分期、DNA 甲基化、肿瘤突变负荷(TMB)、微卫星不稳定性(MSI)、基因共表达分析、错配修复(MMR)、肿瘤微环境(TME)和免疫细胞浸润。研究人员收集了临床病理数据,并使用免疫组化方法验证了肿瘤组织中 RNF187 的表达。与正常组织相比,RNF187在多种癌症中表达上调,并与患者的不良预后相关。RNF187在多种癌症中的表达失调与DNA甲基化、MMR、MSI和TMB密切相关。RNF187可与癌症中的不同免疫细胞相互作用。与RNF187相关的生物标志物可能有助于治疗泛癌症患者的预后和免疫学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immune infiltration is associated with pan-cancer prognostic biomarker RING finger protein 187

Cancer is associated with the highest mortality rate globally. While life-saving screening and treatments exist, better awareness is needed. RNF187, an E3 ligase regulating biological processes, belongs to the RING domain-containing E3 ligase family. RNF187 may serve as an oncogene due to abnormal expression in tumors. However, its association with immune infiltration and prognosis across various cancers remains unclear. We searched several databases including TCGA, GTE x, CCLE, TIMER, and GSEA. R software was used to evaluate RNF187 differential expression, survival, pathology stage, DNA methylation, tumor mutational burden (TMB), microsatellite instability (MSI), gene co-expression analysis, mismatch repairs (MMRs), tumor microenvironment (TME), and immune cell infiltration. Clinicopathological data were collected, and immunohistochemistry was used to verify RNF187 expression in tumor tissues. RNF187 expression was up-regulated in various cancers compared to that in normal tissues and associated with poor patient outcomes. Dysregulation of RNF187 expression in multiple cancer types was strongly correlated with DNA methylation, MMR, MSI, and TMB. RNF187 could interact with different immune cells in cancers. Biomarkers associated with RNF187 may be helpful for prognosis and immunology in treating pan-cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信