{"title":"公平驱动的私有协作机器学习","authors":"Dana Pessach, Tamir Tassa, Erez Shmueli","doi":"10.1145/3639368","DOIUrl":null,"url":null,"abstract":"<p>The performance of machine learning algorithms can be considerably improved when trained over larger datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties, each having access to limited amounts of data, collaborate and share their data. However, such data sharing introduces significant privacy challenges. While multiple recent studies have investigated methods for private collaborative machine learning, the fairness of such collaborative algorithms was overlooked. In this work we suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness considerably with only a minor compromise in accuracy.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fairness-Driven Private Collaborative Machine Learning\",\"authors\":\"Dana Pessach, Tamir Tassa, Erez Shmueli\",\"doi\":\"10.1145/3639368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of machine learning algorithms can be considerably improved when trained over larger datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties, each having access to limited amounts of data, collaborate and share their data. However, such data sharing introduces significant privacy challenges. While multiple recent studies have investigated methods for private collaborative machine learning, the fairness of such collaborative algorithms was overlooked. In this work we suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness considerably with only a minor compromise in accuracy.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639368\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639368","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The performance of machine learning algorithms can be considerably improved when trained over larger datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties, each having access to limited amounts of data, collaborate and share their data. However, such data sharing introduces significant privacy challenges. While multiple recent studies have investigated methods for private collaborative machine learning, the fairness of such collaborative algorithms was overlooked. In this work we suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness considerably with only a minor compromise in accuracy.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.