{"title":"芬斯勒高斯孤子的特征函数","authors":"Caiyun Liu, Songting Yin","doi":"10.1515/math-2023-0167","DOIUrl":null,"url":null,"abstract":"Gaussian solitons are important examples in the theory of Riemannian measure space. In the first part, we explicitly characterize the first eigenfunctions of the drift Laplacian in a Gaussian shrinking soliton, which shows that apart from each coordinate function, other first eigenfunctions must involve exponential functions and the so-called error functions. Moreover, the second eigenfunctions are also described. In the second part, we discuss the corresponding issues in Finsler Gaussian shrinking solitons, which is a natural generalization of Gaussian shrinking solitons. For the first eigenfunction, we complement an example to show that if a coordinate function is a first eigenfunction, then the Finsler Gaussian shrinking soliton must be a Euclidean measure space. For the second eigenfunction, we give some necessary and sufficient conditions for these spaces to be Euclidean measure spaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenfunctions in Finsler Gaussian solitons\",\"authors\":\"Caiyun Liu, Songting Yin\",\"doi\":\"10.1515/math-2023-0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian solitons are important examples in the theory of Riemannian measure space. In the first part, we explicitly characterize the first eigenfunctions of the drift Laplacian in a Gaussian shrinking soliton, which shows that apart from each coordinate function, other first eigenfunctions must involve exponential functions and the so-called error functions. Moreover, the second eigenfunctions are also described. In the second part, we discuss the corresponding issues in Finsler Gaussian shrinking solitons, which is a natural generalization of Gaussian shrinking solitons. For the first eigenfunction, we complement an example to show that if a coordinate function is a first eigenfunction, then the Finsler Gaussian shrinking soliton must be a Euclidean measure space. For the second eigenfunction, we give some necessary and sufficient conditions for these spaces to be Euclidean measure spaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0167\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gaussian solitons are important examples in the theory of Riemannian measure space. In the first part, we explicitly characterize the first eigenfunctions of the drift Laplacian in a Gaussian shrinking soliton, which shows that apart from each coordinate function, other first eigenfunctions must involve exponential functions and the so-called error functions. Moreover, the second eigenfunctions are also described. In the second part, we discuss the corresponding issues in Finsler Gaussian shrinking solitons, which is a natural generalization of Gaussian shrinking solitons. For the first eigenfunction, we complement an example to show that if a coordinate function is a first eigenfunction, then the Finsler Gaussian shrinking soliton must be a Euclidean measure space. For the second eigenfunction, we give some necessary and sufficient conditions for these spaces to be Euclidean measure spaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.