具有免疫反应和 Ornstein-Uhlenbeck 过程的登革热感染随机宿主内模型分析

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Qun Liu, Daqing Jiang
{"title":"具有免疫反应和 Ornstein-Uhlenbeck 过程的登革热感染随机宿主内模型分析","authors":"Qun Liu, Daqing Jiang","doi":"10.1007/s00332-023-10004-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, assuming the certain variable satisfies the Ornstein–Uhlenbeck process, we formulate a stochastic within-host dengue model with immune response to obtain further understanding of the transmission dynamics of dengue fever. Then we analyze the dynamical properties of the stochastic system in detail, including the existence and uniqueness of the global solution, the existence of a stationary distribution, and the extinction of infected monocytes and free viruses. In particular, it is worth revealing that we get the specific form of covariance matrix in its probability density around the quasi-endemic equilibrium of the stochastic system. Finally, numerical illustrative examples are depicted to confirm our theoretical findings.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Stochastic Within-Host Model of Dengue Infection with Immune Response and Ornstein–Uhlenbeck Process\",\"authors\":\"Qun Liu, Daqing Jiang\",\"doi\":\"10.1007/s00332-023-10004-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, assuming the certain variable satisfies the Ornstein–Uhlenbeck process, we formulate a stochastic within-host dengue model with immune response to obtain further understanding of the transmission dynamics of dengue fever. Then we analyze the dynamical properties of the stochastic system in detail, including the existence and uniqueness of the global solution, the existence of a stationary distribution, and the extinction of infected monocytes and free viruses. In particular, it is worth revealing that we get the specific form of covariance matrix in its probability density around the quasi-endemic equilibrium of the stochastic system. Finally, numerical illustrative examples are depicted to confirm our theoretical findings.\\n</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-10004-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10004-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文假设特定变量满足奥恩斯坦-乌伦贝克过程,建立了一个具有免疫反应的宿主内登革热随机模型,以进一步了解登革热的传播动力学。然后,我们详细分析了该随机系统的动力学特性,包括全局解的存在性和唯一性、静态分布的存在性以及受感染单核细胞和游离病毒的消亡。特别值得揭示的是,我们得到了随机系统准流行平衡周围概率密度中协方差矩阵的特定形式。最后,我们通过数值示例来证实我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of a Stochastic Within-Host Model of Dengue Infection with Immune Response and Ornstein–Uhlenbeck Process

Analysis of a Stochastic Within-Host Model of Dengue Infection with Immune Response and Ornstein–Uhlenbeck Process

In this paper, assuming the certain variable satisfies the Ornstein–Uhlenbeck process, we formulate a stochastic within-host dengue model with immune response to obtain further understanding of the transmission dynamics of dengue fever. Then we analyze the dynamical properties of the stochastic system in detail, including the existence and uniqueness of the global solution, the existence of a stationary distribution, and the extinction of infected monocytes and free viruses. In particular, it is worth revealing that we get the specific form of covariance matrix in its probability density around the quasi-endemic equilibrium of the stochastic system. Finally, numerical illustrative examples are depicted to confirm our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信