Victor Cabanillas Zannini, Teófanes Quispe Méndez, A.J.A. Ramos
{"title":"具有 Kelvin-Voigt 阻尼和傅里叶定律的层压梁的最佳稳定性","authors":"Victor Cabanillas Zannini, Teófanes Quispe Méndez, A.J.A. Ramos","doi":"10.3233/asy-231883","DOIUrl":null,"url":null,"abstract":"This article deals with the asymptotic behavior of a mathematical model for laminated beams with Kelvin–Voigt dissipation acting on the equations of transverse displacement and dimensionless slip. We prove that the evolution semigroup is exponentially stable if the damping is effective in the two equations of the model. Otherwise, we prove that the semigroup is polynomially stable and find the optimal decay rate when damping is effective only in the slip equation. Our stability approach is based on the Gearhart–Prüss–Huang Theorem, which characterizes exponential stability, while the polynomial decay rate is obtained using the Borichev and Tomilov Theorem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal stability for laminated beams with Kelvin–Voigt damping and Fourier’s law\",\"authors\":\"Victor Cabanillas Zannini, Teófanes Quispe Méndez, A.J.A. Ramos\",\"doi\":\"10.3233/asy-231883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the asymptotic behavior of a mathematical model for laminated beams with Kelvin–Voigt dissipation acting on the equations of transverse displacement and dimensionless slip. We prove that the evolution semigroup is exponentially stable if the damping is effective in the two equations of the model. Otherwise, we prove that the semigroup is polynomially stable and find the optimal decay rate when damping is effective only in the slip equation. Our stability approach is based on the Gearhart–Prüss–Huang Theorem, which characterizes exponential stability, while the polynomial decay rate is obtained using the Borichev and Tomilov Theorem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231883\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231883","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal stability for laminated beams with Kelvin–Voigt damping and Fourier’s law
This article deals with the asymptotic behavior of a mathematical model for laminated beams with Kelvin–Voigt dissipation acting on the equations of transverse displacement and dimensionless slip. We prove that the evolution semigroup is exponentially stable if the damping is effective in the two equations of the model. Otherwise, we prove that the semigroup is polynomially stable and find the optimal decay rate when damping is effective only in the slip equation. Our stability approach is based on the Gearhart–Prüss–Huang Theorem, which characterizes exponential stability, while the polynomial decay rate is obtained using the Borichev and Tomilov Theorem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.