从 $$L^p$$ 边界到黎曼流形的格罗莫夫-豪斯多夫收敛性

Pub Date : 2024-01-03 DOI:10.1007/s10711-023-00875-y
Brian Allen
{"title":"从 $$L^p$$ 边界到黎曼流形的格罗莫夫-豪斯多夫收敛性","authors":"Brian Allen","doi":"10.1007/s10711-023-00875-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a way of taking <span>\\(L^p\\)</span>, <span>\\(p &gt; \\frac{m}{2}\\)</span> bounds on a <span>\\(m-\\)</span> dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the <span>\\(L^p\\)</span>, <span>\\(p &gt; \\frac{m}{2}\\)</span> bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds\",\"authors\":\"Brian Allen\",\"doi\":\"10.1007/s10711-023-00875-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we provide a way of taking <span>\\\\(L^p\\\\)</span>, <span>\\\\(p &gt; \\\\frac{m}{2}\\\\)</span> bounds on a <span>\\\\(m-\\\\)</span> dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the <span>\\\\(L^p\\\\)</span>, <span>\\\\(p &gt; \\\\frac{m}{2}\\\\)</span> bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00875-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00875-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提供了一种在一个 \(m-\) 维黎曼度量上求取 \(L^p\), \(p > \frac{m}{2}\) 边界的方法,并将其转化为相应距离函数的霍尔德边界。我们可以把这种新的估计看作是一种黎曼流形的莫雷不等式,即把黎曼度量看作相应距离函数的梯度,这样 \(L^p\), \(p > \frac{m}{2}\) 约束就类似于距离函数的霍尔德控制。然后,这个新的估计被用来说明一个紧凑性定理、另一个保证收敛到特定黎曼流形的定理,以及一个新的标量环稳定性结果。我们希望这些结果能在格罗莫夫-豪斯多夫收敛可以实现时,用于证明存在标量曲率约束的几何稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds

分享
查看原文
From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds

In this paper we provide a way of taking \(L^p\), \(p > \frac{m}{2}\) bounds on a \(m-\) dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the \(L^p\), \(p > \frac{m}{2}\) bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信