{"title":"从 $$L^p$$ 边界到黎曼流形的格罗莫夫-豪斯多夫收敛性","authors":"Brian Allen","doi":"10.1007/s10711-023-00875-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a way of taking <span>\\(L^p\\)</span>, <span>\\(p > \\frac{m}{2}\\)</span> bounds on a <span>\\(m-\\)</span> dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the <span>\\(L^p\\)</span>, <span>\\(p > \\frac{m}{2}\\)</span> bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds\",\"authors\":\"Brian Allen\",\"doi\":\"10.1007/s10711-023-00875-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we provide a way of taking <span>\\\\(L^p\\\\)</span>, <span>\\\\(p > \\\\frac{m}{2}\\\\)</span> bounds on a <span>\\\\(m-\\\\)</span> dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the <span>\\\\(L^p\\\\)</span>, <span>\\\\(p > \\\\frac{m}{2}\\\\)</span> bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00875-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00875-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds
In this paper we provide a way of taking \(L^p\), \(p > \frac{m}{2}\) bounds on a \(m-\) dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the \(L^p\), \(p > \frac{m}{2}\) bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.