一类关于与电话数相关的对称点的((vartheta)-bi-伪星形函数

IF 0.9 Q2 MATHEMATICS
G. Murugusundaramoorthy, N. E. Cho, K. Vijaya
{"title":"一类关于与电话数相关的对称点的((vartheta)-bi-伪星形函数","authors":"G. Murugusundaramoorthy,&nbsp;N. E. Cho,&nbsp;K. Vijaya","doi":"10.1007/s13370-023-01159-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce a new class of <span>\\(\\vartheta \\)</span>-bi-pseudo-starlike functions with respect to symmetric points associated with telephone numbers and determine the bounds of the initial Taylor–Maclaurin coefficients and the Fekete–Szegö problem for functions belonging to this class. Some special cases of main results presented here are stated which are new and give better improvement to the initial Taylor-Maclaurin coefficients.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of \\\\(\\\\vartheta \\\\)-bi-pseudo-starlike functions with respect to symmetric points associated with Telephone numbers\",\"authors\":\"G. Murugusundaramoorthy,&nbsp;N. E. Cho,&nbsp;K. Vijaya\",\"doi\":\"10.1007/s13370-023-01159-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we introduce a new class of <span>\\\\(\\\\vartheta \\\\)</span>-bi-pseudo-starlike functions with respect to symmetric points associated with telephone numbers and determine the bounds of the initial Taylor–Maclaurin coefficients and the Fekete–Szegö problem for functions belonging to this class. Some special cases of main results presented here are stated which are new and give better improvement to the initial Taylor-Maclaurin coefficients.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01159-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01159-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一类新的(\vartheta \)-bi-伪星形函数,它们与电话号码相关的对称点有关,并确定了属于这一类函数的初始泰勒-麦克劳林系数的边界和费克特-塞戈问题。本文提出的主要结果的一些特例是新的,能更好地改进初始泰勒-麦克劳林系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of \(\vartheta \)-bi-pseudo-starlike functions with respect to symmetric points associated with Telephone numbers

In this paper we introduce a new class of \(\vartheta \)-bi-pseudo-starlike functions with respect to symmetric points associated with telephone numbers and determine the bounds of the initial Taylor–Maclaurin coefficients and the Fekete–Szegö problem for functions belonging to this class. Some special cases of main results presented here are stated which are new and give better improvement to the initial Taylor-Maclaurin coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信