与薛定谔型算子有关的里兹变换换元的估计值

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2106
Yanhui Wang, Kang Wang
{"title":"与薛定谔型算子有关的里兹变换换元的估计值","authors":"Yanhui Wang, Kang Wang","doi":"10.1515/gmj-2023-2106","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mi>V</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0396.png\" /> <jats:tex-math>{\\mathcal{L}_{2}=(-\\Delta)^{2}+V^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Schrödinger-type operator on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0389.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>5</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0468.png\" /> <jats:tex-math>{n\\geq 5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0297.png\" /> <jats:tex-math>{H^{1}_{\\mathcal{L}_{2}}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Hardy space related to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0397.png\" /> <jats:tex-math>{\\mathcal{L}_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0406.png\" /> <jats:tex-math>{\\mathrm{BMO}_{\\theta}(\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is generated by the Riesz transform <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:msup> <m:mo>∇</m:mo> <m:mi>j</m:mi> </m:msup> <m:mo>⁡</m:mo> <m:msubsup> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0331.png\" /> <jats:tex-math>{T_{\\alpha,\\beta,j}=V^{2\\alpha}\\nabla^{j}\\mathcal{L}_{2}^{-\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0452.png\" /> <jats:tex-math>{j=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0433.png\" /> <jats:tex-math>{b\\in\\mathrm{BMO}_{\\theta}(\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0262.png\" /> <jats:tex-math>{0&lt;\\alpha\\leq 1-\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>β</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0376.png\" /> <jats:tex-math>{\\frac{j}{4}&lt;\\beta\\leq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>-</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0358.png\" /> <jats:tex-math>{\\beta-\\alpha=\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonnegative potential <jats:italic>V</jats:italic> belongs to both the reverse Hölder class <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>RH</m:mi> <m:mi>s</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0407.png\" /> <jats:tex-math>{\\mathrm{RH}_{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>≥</m:mo> <m:mfrac> <m:mi>n</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0485.png\" /> <jats:tex-math>{s\\geq\\frac{n}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Gaussian class associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0254.png\" /> <jats:tex-math>{(-\\Delta)^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0311.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is obtained, and it is also shown that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0297.png\" /> <jats:tex-math>{H^{1}_{\\mathcal{L}_{2}}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to weak <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0307.png\" /> <jats:tex-math>{L^{1}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates for the commutators of Riesz transforms related to Schrödinger-type operators\",\"authors\":\"Yanhui Wang, Kang Wang\",\"doi\":\"10.1515/gmj-2023-2106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mi>V</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0396.png\\\" /> <jats:tex-math>{\\\\mathcal{L}_{2}=(-\\\\Delta)^{2}+V^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Schrödinger-type operator on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0389.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>5</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0468.png\\\" /> <jats:tex-math>{n\\\\geq 5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0297.png\\\" /> <jats:tex-math>{H^{1}_{\\\\mathcal{L}_{2}}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Hardy space related to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0397.png\\\" /> <jats:tex-math>{\\\\mathcal{L}_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0406.png\\\" /> <jats:tex-math>{\\\\mathrm{BMO}_{\\\\theta}(\\\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is generated by the Riesz transform <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:msup> <m:mo>∇</m:mo> <m:mi>j</m:mi> </m:msup> <m:mo>⁡</m:mo> <m:msubsup> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0331.png\\\" /> <jats:tex-math>{T_{\\\\alpha,\\\\beta,j}=V^{2\\\\alpha}\\\\nabla^{j}\\\\mathcal{L}_{2}^{-\\\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0452.png\\\" /> <jats:tex-math>{j=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0433.png\\\" /> <jats:tex-math>{b\\\\in\\\\mathrm{BMO}_{\\\\theta}(\\\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0262.png\\\" /> <jats:tex-math>{0&lt;\\\\alpha\\\\leq 1-\\\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>β</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0376.png\\\" /> <jats:tex-math>{\\\\frac{j}{4}&lt;\\\\beta\\\\leq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>-</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0358.png\\\" /> <jats:tex-math>{\\\\beta-\\\\alpha=\\\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonnegative potential <jats:italic>V</jats:italic> belongs to both the reverse Hölder class <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>RH</m:mi> <m:mi>s</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0407.png\\\" /> <jats:tex-math>{\\\\mathrm{RH}_{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>s</m:mi> <m:mo>≥</m:mo> <m:mfrac> <m:mi>n</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0485.png\\\" /> <jats:tex-math>{s\\\\geq\\\\frac{n}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Gaussian class associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0254.png\\\" /> <jats:tex-math>{(-\\\\Delta)^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0311.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is obtained, and it is also shown that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0297.png\\\" /> <jats:tex-math>{H^{1}_{\\\\mathcal{L}_{2}}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to weak <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0307.png\\\" /> <jats:tex-math>{L^{1}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 ℒ 2 = ( - Δ ) 2 + V 2 {\mathcal{L}_{2}=(-\Delta)^{2}+V^{2}} 是ℝ n 上的薛定谔型算子 {\mathbb{R}^{n}}( n≥ 5 {n\geq 5} ) ( n ≥ 5 {n\geq 5} ), 让 H ℒ 2 1 ( ℝ n ) {H^{1}_{mathcal{L}_{2}}}(\mathbb{R}^{n})} 是与ℒ 2 {\mathcal{L}_{2}} 相关的哈代空间。 让 BMO θ ( ρ ) {\mathrm{BMO}_{\theta}(\rho)} 是 Bongioanni、Harboure 和 Salinas 引入的 BMO 型空间。本文将研究换向器 [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} 的有界性。 T α , β , j = V 2 α ∇ j ℒ 2 - β {T_{\alpha,\beta,j}=V^{2\alpha}\nabla^{j}\mathcal{L}_{2}^{-\beta}} , j = 1 , 2 , 3 {j=1,2,3} , 并且 b∈ BMO θ ( ρ ) {b\inmathrm{BMO}_{theta}(\rho)} 。这里,0 < α ≤ 1 - j 4 {0<\alpha\leq 1-\frac{j}{4}} 。 , j 4 < β ≤ 1 {\frac{j}{4}<\beta\leq 1} , β -α = j{4}. , β - α = j 4 {\beta-\alpha=\frac{j}{4}} 非负电势 V 同时属于反向荷尔德类 RH s {\mathrm{RH}_{s}} ,s ≥ n 2 {s\geq\frac{n}{2}} 和与 ( - Δ ) 2 {(-\Delta)^{2}} 相关的高斯类。 .得到 [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} 的 L p {L^{p}} 有界性,同时证明 [ b , T α , β , j ] {[b、T_{alpha,\beta,j}]} 从 H ℒ 2 1 ( ℝ n ) {H^{1}_{mathcal{L}_{2}}(\mathbb{R}^{n})} 到弱 L 1 ( ℝ n ) {L^{1}(\mathbb{R}^{n})} 是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Estimates for the commutators of Riesz transforms related to Schrödinger-type operators
Let 2 = ( - Δ ) 2 + V 2 {\mathcal{L}_{2}=(-\Delta)^{2}+V^{2}} be the Schrödinger-type operator on n {\mathbb{R}^{n}} ( n 5 {n\geq 5} ), let H 2 1 ( n ) {H^{1}_{\mathcal{L}_{2}}(\mathbb{R}^{n})} be the Hardy space related to 2 {\mathcal{L}_{2}} , and let BMO θ ( ρ ) {\mathrm{BMO}_{\theta}(\rho)} be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} , which is generated by the Riesz transform T α , β , j = V 2 α j 2 - β {T_{\alpha,\beta,j}=V^{2\alpha}\nabla^{j}\mathcal{L}_{2}^{-\beta}} , j = 1 , 2 , 3 {j=1,2,3} , and b BMO θ ( ρ ) {b\in\mathrm{BMO}_{\theta}(\rho)} . Here, 0 < α 1 - j 4 {0<\alpha\leq 1-\frac{j}{4}} , j 4 < β 1 {\frac{j}{4}<\beta\leq 1} , β - α = j 4 {\beta-\alpha=\frac{j}{4}} , and the nonnegative potential V belongs to both the reverse Hölder class RH s {\mathrm{RH}_{s}} with s n 2 {s\geq\frac{n}{2}} and the Gaussian class associated with ( - Δ ) 2 {(-\Delta)^{2}} . The L p {L^{p}} boundedness of [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} is obtained, and it is also shown that [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} is bounded from H 2 1 ( n ) {H^{1}_{\mathcal{L}_{2}}(\mathbb{R}^{n})} to weak L 1 ( n ) {L^{1}(\mathbb{R}^{n})} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信