与薛定谔型算子有关的里兹变换换元的估计值

IF 0.8 4区 数学 Q2 MATHEMATICS
Yanhui Wang, Kang Wang
{"title":"与薛定谔型算子有关的里兹变换换元的估计值","authors":"Yanhui Wang, Kang Wang","doi":"10.1515/gmj-2023-2106","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mi>V</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0396.png\" /> <jats:tex-math>{\\mathcal{L}_{2}=(-\\Delta)^{2}+V^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Schrödinger-type operator on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0389.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>5</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0468.png\" /> <jats:tex-math>{n\\geq 5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0297.png\" /> <jats:tex-math>{H^{1}_{\\mathcal{L}_{2}}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Hardy space related to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0397.png\" /> <jats:tex-math>{\\mathcal{L}_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0406.png\" /> <jats:tex-math>{\\mathrm{BMO}_{\\theta}(\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is generated by the Riesz transform <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:msup> <m:mo>∇</m:mo> <m:mi>j</m:mi> </m:msup> <m:mo>⁡</m:mo> <m:msubsup> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0331.png\" /> <jats:tex-math>{T_{\\alpha,\\beta,j}=V^{2\\alpha}\\nabla^{j}\\mathcal{L}_{2}^{-\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0452.png\" /> <jats:tex-math>{j=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0433.png\" /> <jats:tex-math>{b\\in\\mathrm{BMO}_{\\theta}(\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0262.png\" /> <jats:tex-math>{0&lt;\\alpha\\leq 1-\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>β</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0376.png\" /> <jats:tex-math>{\\frac{j}{4}&lt;\\beta\\leq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>-</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0358.png\" /> <jats:tex-math>{\\beta-\\alpha=\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonnegative potential <jats:italic>V</jats:italic> belongs to both the reverse Hölder class <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>RH</m:mi> <m:mi>s</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0407.png\" /> <jats:tex-math>{\\mathrm{RH}_{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>≥</m:mo> <m:mfrac> <m:mi>n</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0485.png\" /> <jats:tex-math>{s\\geq\\frac{n}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Gaussian class associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0254.png\" /> <jats:tex-math>{(-\\Delta)^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0311.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is obtained, and it is also shown that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0346.png\" /> <jats:tex-math>{[b,T_{\\alpha,\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0297.png\" /> <jats:tex-math>{H^{1}_{\\mathcal{L}_{2}}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to weak <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0307.png\" /> <jats:tex-math>{L^{1}(\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"89 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates for the commutators of Riesz transforms related to Schrödinger-type operators\",\"authors\":\"Yanhui Wang, Kang Wang\",\"doi\":\"10.1515/gmj-2023-2106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mi>V</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0396.png\\\" /> <jats:tex-math>{\\\\mathcal{L}_{2}=(-\\\\Delta)^{2}+V^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Schrödinger-type operator on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0389.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>5</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0468.png\\\" /> <jats:tex-math>{n\\\\geq 5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0297.png\\\" /> <jats:tex-math>{H^{1}_{\\\\mathcal{L}_{2}}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Hardy space related to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0397.png\\\" /> <jats:tex-math>{\\\\mathcal{L}_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0406.png\\\" /> <jats:tex-math>{\\\\mathrm{BMO}_{\\\\theta}(\\\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is generated by the Riesz transform <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:msup> <m:mo>∇</m:mo> <m:mi>j</m:mi> </m:msup> <m:mo>⁡</m:mo> <m:msubsup> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0331.png\\\" /> <jats:tex-math>{T_{\\\\alpha,\\\\beta,j}=V^{2\\\\alpha}\\\\nabla^{j}\\\\mathcal{L}_{2}^{-\\\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0452.png\\\" /> <jats:tex-math>{j=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0433.png\\\" /> <jats:tex-math>{b\\\\in\\\\mathrm{BMO}_{\\\\theta}(\\\\rho)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0262.png\\\" /> <jats:tex-math>{0&lt;\\\\alpha\\\\leq 1-\\\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>β</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0376.png\\\" /> <jats:tex-math>{\\\\frac{j}{4}&lt;\\\\beta\\\\leq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>-</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mfrac> <m:mi>j</m:mi> <m:mn>4</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0358.png\\\" /> <jats:tex-math>{\\\\beta-\\\\alpha=\\\\frac{j}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonnegative potential <jats:italic>V</jats:italic> belongs to both the reverse Hölder class <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>RH</m:mi> <m:mi>s</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0407.png\\\" /> <jats:tex-math>{\\\\mathrm{RH}_{s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>s</m:mi> <m:mo>≥</m:mo> <m:mfrac> <m:mi>n</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0485.png\\\" /> <jats:tex-math>{s\\\\geq\\\\frac{n}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Gaussian class associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0254.png\\\" /> <jats:tex-math>{(-\\\\Delta)^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0311.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is obtained, and it is also shown that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0346.png\\\" /> <jats:tex-math>{[b,T_{\\\\alpha,\\\\beta,j}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\\\"script\\\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0297.png\\\" /> <jats:tex-math>{H^{1}_{\\\\mathcal{L}_{2}}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to weak <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2106_eq_0307.png\\\" /> <jats:tex-math>{L^{1}(\\\\mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2106\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 ℒ 2 = ( - Δ ) 2 + V 2 {\mathcal{L}_{2}=(-\Delta)^{2}+V^{2}} 是ℝ n 上的薛定谔型算子 {\mathbb{R}^{n}}( n≥ 5 {n\geq 5} ) ( n ≥ 5 {n\geq 5} ), 让 H ℒ 2 1 ( ℝ n ) {H^{1}_{mathcal{L}_{2}}}(\mathbb{R}^{n})} 是与ℒ 2 {\mathcal{L}_{2}} 相关的哈代空间。 让 BMO θ ( ρ ) {\mathrm{BMO}_{\theta}(\rho)} 是 Bongioanni、Harboure 和 Salinas 引入的 BMO 型空间。本文将研究换向器 [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} 的有界性。 T α , β , j = V 2 α ∇ j ℒ 2 - β {T_{\alpha,\beta,j}=V^{2\alpha}\nabla^{j}\mathcal{L}_{2}^{-\beta}} , j = 1 , 2 , 3 {j=1,2,3} , 并且 b∈ BMO θ ( ρ ) {b\inmathrm{BMO}_{theta}(\rho)} 。这里,0 < α ≤ 1 - j 4 {0<\alpha\leq 1-\frac{j}{4}} 。 , j 4 < β ≤ 1 {\frac{j}{4}<\beta\leq 1} , β -α = j{4}. , β - α = j 4 {\beta-\alpha=\frac{j}{4}} 非负电势 V 同时属于反向荷尔德类 RH s {\mathrm{RH}_{s}} ,s ≥ n 2 {s\geq\frac{n}{2}} 和与 ( - Δ ) 2 {(-\Delta)^{2}} 相关的高斯类。 .得到 [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} 的 L p {L^{p}} 有界性,同时证明 [ b , T α , β , j ] {[b、T_{alpha,\beta,j}]} 从 H ℒ 2 1 ( ℝ n ) {H^{1}_{mathcal{L}_{2}}(\mathbb{R}^{n})} 到弱 L 1 ( ℝ n ) {L^{1}(\mathbb{R}^{n})} 是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for the commutators of Riesz transforms related to Schrödinger-type operators
Let 2 = ( - Δ ) 2 + V 2 {\mathcal{L}_{2}=(-\Delta)^{2}+V^{2}} be the Schrödinger-type operator on n {\mathbb{R}^{n}} ( n 5 {n\geq 5} ), let H 2 1 ( n ) {H^{1}_{\mathcal{L}_{2}}(\mathbb{R}^{n})} be the Hardy space related to 2 {\mathcal{L}_{2}} , and let BMO θ ( ρ ) {\mathrm{BMO}_{\theta}(\rho)} be the BMO-type space introduced by Bongioanni, Harboure and Salinas. In this paper, we investigate the boundedness of commutator [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} , which is generated by the Riesz transform T α , β , j = V 2 α j 2 - β {T_{\alpha,\beta,j}=V^{2\alpha}\nabla^{j}\mathcal{L}_{2}^{-\beta}} , j = 1 , 2 , 3 {j=1,2,3} , and b BMO θ ( ρ ) {b\in\mathrm{BMO}_{\theta}(\rho)} . Here, 0 < α 1 - j 4 {0<\alpha\leq 1-\frac{j}{4}} , j 4 < β 1 {\frac{j}{4}<\beta\leq 1} , β - α = j 4 {\beta-\alpha=\frac{j}{4}} , and the nonnegative potential V belongs to both the reverse Hölder class RH s {\mathrm{RH}_{s}} with s n 2 {s\geq\frac{n}{2}} and the Gaussian class associated with ( - Δ ) 2 {(-\Delta)^{2}} . The L p {L^{p}} boundedness of [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} is obtained, and it is also shown that [ b , T α , β , j ] {[b,T_{\alpha,\beta,j}]} is bounded from H 2 1 ( n ) {H^{1}_{\mathcal{L}_{2}}(\mathbb{R}^{n})} to weak L 1 ( n ) {L^{1}(\mathbb{R}^{n})} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信