合成数据在金融领域的应用

Vamsi K. Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, Ganapathy Mani, Saheed Obitayo, Deepak Paramanand, Natraj Raman, Mikhail Solonin, Srijan Sood, Svitlana Vyetrenko, Haibei Zhu, Manuela Veloso, Tucker Balch
{"title":"合成数据在金融领域的应用","authors":"Vamsi K. Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, Ganapathy Mani, Saheed Obitayo, Deepak Paramanand, Natraj Raman, Mikhail Solonin, Srijan Sood, Svitlana Vyetrenko, Haibei Zhu, Manuela Veloso, Tucker Balch","doi":"arxiv-2401.00081","DOIUrl":null,"url":null,"abstract":"Synthetic data has made tremendous strides in various commercial settings\nincluding finance, healthcare, and virtual reality. We present a broad overview\nof prototypical applications of synthetic data in the financial sector and in\nparticular provide richer details for a few select ones. These cover a wide\nvariety of data modalities including tabular, time-series, event-series, and\nunstructured arising from both markets and retail financial applications. Since\nfinance is a highly regulated industry, synthetic data is a potential approach\nfor dealing with issues related to privacy, fairness, and explainability.\nVarious metrics are utilized in evaluating the quality and effectiveness of our\napproaches in these applications. We conclude with open directions in synthetic\ndata in the context of the financial domain.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Data Applications in Finance\",\"authors\":\"Vamsi K. Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, Ganapathy Mani, Saheed Obitayo, Deepak Paramanand, Natraj Raman, Mikhail Solonin, Srijan Sood, Svitlana Vyetrenko, Haibei Zhu, Manuela Veloso, Tucker Balch\",\"doi\":\"arxiv-2401.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic data has made tremendous strides in various commercial settings\\nincluding finance, healthcare, and virtual reality. We present a broad overview\\nof prototypical applications of synthetic data in the financial sector and in\\nparticular provide richer details for a few select ones. These cover a wide\\nvariety of data modalities including tabular, time-series, event-series, and\\nunstructured arising from both markets and retail financial applications. Since\\nfinance is a highly regulated industry, synthetic data is a potential approach\\nfor dealing with issues related to privacy, fairness, and explainability.\\nVarious metrics are utilized in evaluating the quality and effectiveness of our\\napproaches in these applications. We conclude with open directions in synthetic\\ndata in the context of the financial domain.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成数据在金融、医疗保健和虚拟现实等各种商业领域取得了长足的进步。我们对合成数据在金融领域的原型应用进行了广泛概述,并特别提供了一些精选应用的更丰富细节。这些应用涵盖了多种数据模式,包括表格、时间序列、事件序列以及市场和零售金融应用中产生的非结构化数据。由于金融是一个高度受监管的行业,合成数据是处理与隐私、公平性和可解释性相关问题的一种潜在方法。最后,我们提出了金融领域合成数据的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Data Applications in Finance
Synthetic data has made tremendous strides in various commercial settings including finance, healthcare, and virtual reality. We present a broad overview of prototypical applications of synthetic data in the financial sector and in particular provide richer details for a few select ones. These cover a wide variety of data modalities including tabular, time-series, event-series, and unstructured arising from both markets and retail financial applications. Since finance is a highly regulated industry, synthetic data is a potential approach for dealing with issues related to privacy, fairness, and explainability. Various metrics are utilized in evaluating the quality and effectiveness of our approaches in these applications. We conclude with open directions in synthetic data in the context of the financial domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信