Guangwei Jia, Congcong Ren, Hongyan Wang, Caixia Fan
{"title":"采用基于生理学的药代动力学(PBPK)方法预测罗氟司特与 CYP3A4/1A2 致效体之间的药物相互作用","authors":"Guangwei Jia, Congcong Ren, Hongyan Wang, Caixia Fan","doi":"10.1186/s40360-023-00726-2","DOIUrl":null,"url":null,"abstract":"This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model to predict changes in the pharmacokinetics (PK) and pharmacodynamics (PD, PDE4 inhibition) of roflumilast (ROF) and ROF N-oxide when co-administered with eight CYP3A4/1A2 perpetrators. The population PBPK model of ROF and ROF N-oxide has been successfully developed and validated based on the four clinical PK studies and five clinical drug-drug interactions (DDIs) studies. In PK simulations, every ratio of prediction to observation for PK parameters fell within the range 0.7 to 1.5. In DDI simulations, except for tow peak concentration ratios (Cmax) of ROF with rifampicin (prediction: 0.63 vs. observation: 0.19) and with cimetidine (prediction: 1.07 vs. observation: 1.85), the remaining predicted ratios closely matched the observed ratios. Additionally, the PBPK model suggested that co-administration with the three perpetrators (cimetidine, enoxacin, and fluconazole) may use with caution, with CYP3A4 strong inhibitor (ketoconazole and itraconazole) or with dual CYP3A41A2 inhibitor (fluvoxamine) may reduce to half-dosage or use with caution, while co-administration with CYP3A4 strong or moderate inducer (rifampicin, efavirenz) should avoid. Overall, the present PBPK model can provide recommendations for adjusting dosing regimens in the presence of DDIs.","PeriodicalId":501597,"journal":{"name":"BMC Pharmacology and Toxicology","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of drug–drug interactions between roflumilast and CYP3A4/1A2 perpetrators using a physiologically-based pharmacokinetic (PBPK) approach\",\"authors\":\"Guangwei Jia, Congcong Ren, Hongyan Wang, Caixia Fan\",\"doi\":\"10.1186/s40360-023-00726-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model to predict changes in the pharmacokinetics (PK) and pharmacodynamics (PD, PDE4 inhibition) of roflumilast (ROF) and ROF N-oxide when co-administered with eight CYP3A4/1A2 perpetrators. The population PBPK model of ROF and ROF N-oxide has been successfully developed and validated based on the four clinical PK studies and five clinical drug-drug interactions (DDIs) studies. In PK simulations, every ratio of prediction to observation for PK parameters fell within the range 0.7 to 1.5. In DDI simulations, except for tow peak concentration ratios (Cmax) of ROF with rifampicin (prediction: 0.63 vs. observation: 0.19) and with cimetidine (prediction: 1.07 vs. observation: 1.85), the remaining predicted ratios closely matched the observed ratios. Additionally, the PBPK model suggested that co-administration with the three perpetrators (cimetidine, enoxacin, and fluconazole) may use with caution, with CYP3A4 strong inhibitor (ketoconazole and itraconazole) or with dual CYP3A41A2 inhibitor (fluvoxamine) may reduce to half-dosage or use with caution, while co-administration with CYP3A4 strong or moderate inducer (rifampicin, efavirenz) should avoid. Overall, the present PBPK model can provide recommendations for adjusting dosing regimens in the presence of DDIs.\",\"PeriodicalId\":501597,\"journal\":{\"name\":\"BMC Pharmacology and Toxicology\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology and Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-023-00726-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40360-023-00726-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of drug–drug interactions between roflumilast and CYP3A4/1A2 perpetrators using a physiologically-based pharmacokinetic (PBPK) approach
This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model to predict changes in the pharmacokinetics (PK) and pharmacodynamics (PD, PDE4 inhibition) of roflumilast (ROF) and ROF N-oxide when co-administered with eight CYP3A4/1A2 perpetrators. The population PBPK model of ROF and ROF N-oxide has been successfully developed and validated based on the four clinical PK studies and five clinical drug-drug interactions (DDIs) studies. In PK simulations, every ratio of prediction to observation for PK parameters fell within the range 0.7 to 1.5. In DDI simulations, except for tow peak concentration ratios (Cmax) of ROF with rifampicin (prediction: 0.63 vs. observation: 0.19) and with cimetidine (prediction: 1.07 vs. observation: 1.85), the remaining predicted ratios closely matched the observed ratios. Additionally, the PBPK model suggested that co-administration with the three perpetrators (cimetidine, enoxacin, and fluconazole) may use with caution, with CYP3A4 strong inhibitor (ketoconazole and itraconazole) or with dual CYP3A41A2 inhibitor (fluvoxamine) may reduce to half-dosage or use with caution, while co-administration with CYP3A4 strong or moderate inducer (rifampicin, efavirenz) should avoid. Overall, the present PBPK model can provide recommendations for adjusting dosing regimens in the presence of DDIs.