{"title":"自回归计数时间序列的连续在线监测","authors":"","doi":"10.1007/s42952-023-00247-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study considers the online monitoring problem for detecting the parameter change in time series of counts. For this task, we construct a monitoring process based on the residuals obtained from integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. We consider this problem within a more general framework using martingale difference sequences as the monitoring problem on GARCH-type processes based on the residuals or score vectors can be viewed as a special case of the monitoring problems on martingale differences. The limiting behavior of the stopping rule is investigated in this general set-up and is applied to the INGARCH processes. To assess the performance of our method, we conduct Monte Carlo simulations. A real data analysis is also provided for illustration. Our findings in this empirical study demonstrate the validity of the proposed monitoring process.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential online monitoring for autoregressive time series of counts\",\"authors\":\"\",\"doi\":\"10.1007/s42952-023-00247-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This study considers the online monitoring problem for detecting the parameter change in time series of counts. For this task, we construct a monitoring process based on the residuals obtained from integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. We consider this problem within a more general framework using martingale difference sequences as the monitoring problem on GARCH-type processes based on the residuals or score vectors can be viewed as a special case of the monitoring problems on martingale differences. The limiting behavior of the stopping rule is investigated in this general set-up and is applied to the INGARCH processes. To assess the performance of our method, we conduct Monte Carlo simulations. A real data analysis is also provided for illustration. Our findings in this empirical study demonstrate the validity of the proposed monitoring process.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-023-00247-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00247-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequential online monitoring for autoregressive time series of counts
Abstract
This study considers the online monitoring problem for detecting the parameter change in time series of counts. For this task, we construct a monitoring process based on the residuals obtained from integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. We consider this problem within a more general framework using martingale difference sequences as the monitoring problem on GARCH-type processes based on the residuals or score vectors can be viewed as a special case of the monitoring problems on martingale differences. The limiting behavior of the stopping rule is investigated in this general set-up and is applied to the INGARCH processes. To assess the performance of our method, we conduct Monte Carlo simulations. A real data analysis is also provided for illustration. Our findings in this empirical study demonstrate the validity of the proposed monitoring process.