{"title":"高对比度介质中的波传播:周期及其他","authors":"Élise Fressart, Barbara Verfürth","doi":"10.1515/cmam-2023-0066","DOIUrl":null,"url":null,"abstract":"This work is concerned with the classical wave equation with a high-contrast coefficient in the spatial derivative operator. We first treat the periodic case, where we derive a new limit in the one-dimensional case. The behavior is illustrated numerically and contrasted to the higher-dimensional case. For general unstructured high-contrast coefficients, we present the Localized Orthogonal Decomposition and show a priori error estimates in suitably weighted norms. Numerical experiments illustrate the convergence rates in various settings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"72 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave Propagation in High-Contrast Media: Periodic and Beyond\",\"authors\":\"Élise Fressart, Barbara Verfürth\",\"doi\":\"10.1515/cmam-2023-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with the classical wave equation with a high-contrast coefficient in the spatial derivative operator. We first treat the periodic case, where we derive a new limit in the one-dimensional case. The behavior is illustrated numerically and contrasted to the higher-dimensional case. For general unstructured high-contrast coefficients, we present the Localized Orthogonal Decomposition and show a priori error estimates in suitably weighted norms. Numerical experiments illustrate the convergence rates in various settings.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Wave Propagation in High-Contrast Media: Periodic and Beyond
This work is concerned with the classical wave equation with a high-contrast coefficient in the spatial derivative operator. We first treat the periodic case, where we derive a new limit in the one-dimensional case. The behavior is illustrated numerically and contrasted to the higher-dimensional case. For general unstructured high-contrast coefficients, we present the Localized Orthogonal Decomposition and show a priori error estimates in suitably weighted norms. Numerical experiments illustrate the convergence rates in various settings.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.