{"title":"广义局部同调模块的非凡性和同完备性","authors":"Tran Tuan Nam, Nguyen Minh Tri","doi":"10.1007/s10998-023-00567-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show some results on the non-vanishing of the generalized local cohomology modules <span>\\(H^i_I(M,N)\\)</span>. In a Cohen–Macaulay local ring <span>\\((R,\\mathop {\\mathfrak {m}})\\)</span>, we prove, by using induction on <span>\\(\\dim N\\)</span>, that if <i>M</i>, <i>N</i> are two finitely generated <i>R</i>-modules with <span>\\({\\text {id}}\\,M<\\infty \\)</span> and <span>\\({\\text {Gid}}\\,N<\\infty \\)</span>, then <span>\\(H^{\\dim R-grade _R({\\text {Ann}}_RN,M)}_{\\mathop {\\mathfrak {m}}}(M,N)\\ne 0\\)</span>. We also study the <i>I</i>-cofiniteness of the generalized local cohomology module <span>\\(H^i_{\\mathop {\\mathfrak {m}}}(M,N)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-vanishing and cofiniteness of generalized local cohomology modules\",\"authors\":\"Tran Tuan Nam, Nguyen Minh Tri\",\"doi\":\"10.1007/s10998-023-00567-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show some results on the non-vanishing of the generalized local cohomology modules <span>\\\\(H^i_I(M,N)\\\\)</span>. In a Cohen–Macaulay local ring <span>\\\\((R,\\\\mathop {\\\\mathfrak {m}})\\\\)</span>, we prove, by using induction on <span>\\\\(\\\\dim N\\\\)</span>, that if <i>M</i>, <i>N</i> are two finitely generated <i>R</i>-modules with <span>\\\\({\\\\text {id}}\\\\,M<\\\\infty \\\\)</span> and <span>\\\\({\\\\text {Gid}}\\\\,N<\\\\infty \\\\)</span>, then <span>\\\\(H^{\\\\dim R-grade _R({\\\\text {Ann}}_RN,M)}_{\\\\mathop {\\\\mathfrak {m}}}(M,N)\\\\ne 0\\\\)</span>. We also study the <i>I</i>-cofiniteness of the generalized local cohomology module <span>\\\\(H^i_{\\\\mathop {\\\\mathfrak {m}}}(M,N)\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00567-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00567-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们展示了关于广义局部同调模块 \(H^i_I(M,N)\)的非凡性的一些结果。在一个科恩-麦考莱局部环((R,\mathop {\mathfrak {m}})中,我们通过对\(\dim N\) 的归纳证明,如果 M, N 是两个有限生成的 R 模块,并且具有\({\text {id}}\,M<;\和({\text {Gid}}\,N<\infty \),那么(H^{\dim R-grade _R({\text {Ann}}_RN,M)}_{\mathop {\mathfrak {m}}(M,N)\ne 0\ )。我们还研究了广义局部同调模块 \(H^i_{\mathop {\mathfrak {m}}(M,N)\) 的 I-cofiniteness.)
Non-vanishing and cofiniteness of generalized local cohomology modules
In this paper, we show some results on the non-vanishing of the generalized local cohomology modules \(H^i_I(M,N)\). In a Cohen–Macaulay local ring \((R,\mathop {\mathfrak {m}})\), we prove, by using induction on \(\dim N\), that if M, N are two finitely generated R-modules with \({\text {id}}\,M<\infty \) and \({\text {Gid}}\,N<\infty \), then \(H^{\dim R-grade _R({\text {Ann}}_RN,M)}_{\mathop {\mathfrak {m}}}(M,N)\ne 0\). We also study the I-cofiniteness of the generalized local cohomology module \(H^i_{\mathop {\mathfrak {m}}}(M,N)\).