Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh
{"title":"算子矩阵的数值半径与算子的某些复数组合有关","authors":"Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh","doi":"10.1515/gmj-2023-2112","DOIUrl":null,"url":null,"abstract":"Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical radii of operator matrices in terms of certain complex combinations of operators\",\"authors\":\"Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh\",\"doi\":\"10.1515/gmj-2023-2112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical radii of operator matrices in terms of certain complex combinations of operators
Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.