算子矩阵的数值半径与算子的某些复数组合有关

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2112
Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh
{"title":"算子矩阵的数值半径与算子的某些复数组合有关","authors":"Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh","doi":"10.1515/gmj-2023-2112","DOIUrl":null,"url":null,"abstract":"Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical radii of operator matrices in terms of certain complex combinations of operators\",\"authors\":\"Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh\",\"doi\":\"10.1515/gmj-2023-2112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算子矩阵在希尔伯特空间算子数值半径性质的研究中发挥了重要作用。本文以某些复数组合为基础,提出了算子矩阵数值半径的几个新的尖锐上界。所得结果揭示了数值半径的许多有趣性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Numerical radii of operator matrices in terms of certain complex combinations of operators
Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信