求助PDF
{"title":"几何最大算子弱型不等式的两种呈现形式","authors":"Paul Hagelstein, Giorgi Oniani, Alex Stokolos","doi":"10.1515/gmj-2023-2113","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0076.png\" /> <jats:tex-math>{\\Phi:[0,\\infty)\\rightarrow[0,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Young’s function satisfying the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0070.png\" /> <jats:tex-math>{\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the geometric maximal operator associated to a homothecy invariant basis <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on measurable functions on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>Q</jats:italic> be the unit cube in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0058.png\" /> <jats:tex-math>{L^{\\Phi}(Q)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Orlicz space associated to Φ with the norm given by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo movablelimits=\"false\">inf</m:mo> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">{</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mi>Q</m:mi> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>c</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0019.png\" /> <jats:tex-math>\\|f\\|_{L^{\\Phi}(Q)}:=\\inf\\Biggl{\\{}c>0:\\int_{Q}\\Phi\\bigg{(}\\frac{|f|}{c}\\bigg{% )}\\leq 1\\Bigg{\\}}.</jats:tex-math> </jats:alternatives> </jats:disp-formula> We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0033.png\" /> <jats:tex-math>|\\{x\\in\\mathbb{R}^{n}:M_{\\mathcal{B}}\\kern 1.422638ptf(x)>\\alpha\\}|\\leq C_{1}% \\int_{\\mathbb{R}^{n}}\\Phi\\bigg{(}\\frac{|f|}{\\alpha}\\bigg{)}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo></m:mo> <m:mfrac> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mi>α</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0025.png\" /> <jats:tex-math>|\\{x\\in Q:M_{\\mathcal{B}}\\kern 1.422638ptf(x)>\\alpha\\}|\\leq C_{2}\\frac{\\|f\\|_{% L^{\\Phi}(Q)}}{\\alpha}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> supported on <jats:italic>Q</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homothecy invariant basis differentiating integrals of all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0087.png\" /> <jats:tex-math>{\\int_{\\mathbb{R}^{n}}\\Phi(|f|)<\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the associated maximal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies both of the above weak type estimates.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two presentations of a weak type inequality for geometric maximal operators\",\"authors\":\"Paul Hagelstein, Giorgi Oniani, Alex Stokolos\",\"doi\":\"10.1515/gmj-2023-2113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0076.png\\\" /> <jats:tex-math>{\\\\Phi:[0,\\\\infty)\\\\rightarrow[0,\\\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Young’s function satisfying the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0070.png\\\" /> <jats:tex-math>{\\\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the geometric maximal operator associated to a homothecy invariant basis <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0098.png\\\" /> <jats:tex-math>{\\\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on measurable functions on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>Q</jats:italic> be the unit cube in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0058.png\\\" /> <jats:tex-math>{L^{\\\\Phi}(Q)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Orlicz space associated to Φ with the norm given by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo movablelimits=\\\"false\\\">inf</m:mo> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\\\"260%\\\" minsize=\\\"260%\\\">{</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:mi>Q</m:mi> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>c</m:mi> </m:mfrac> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo maxsize=\\\"260%\\\" minsize=\\\"260%\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0019.png\\\" /> <jats:tex-math>\\\\|f\\\\|_{L^{\\\\Phi}(Q)}:=\\\\inf\\\\Biggl{\\\\{}c>0:\\\\int_{Q}\\\\Phi\\\\bigg{(}\\\\frac{|f|}{c}\\\\bigg{% )}\\\\leq 1\\\\Bigg{\\\\}}.</jats:tex-math> </jats:alternatives> </jats:disp-formula> We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:mfrac> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0033.png\\\" /> <jats:tex-math>|\\\\{x\\\\in\\\\mathbb{R}^{n}:M_{\\\\mathcal{B}}\\\\kern 1.422638ptf(x)>\\\\alpha\\\\}|\\\\leq C_{1}% \\\\int_{\\\\mathbb{R}^{n}}\\\\Phi\\\\bigg{(}\\\\frac{|f|}{\\\\alpha}\\\\bigg{)}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0078.png\\\" /> <jats:tex-math>{\\\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo></m:mo> <m:mfrac> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mi>α</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0025.png\\\" /> <jats:tex-math>|\\\\{x\\\\in Q:M_{\\\\mathcal{B}}\\\\kern 1.422638ptf(x)>\\\\alpha\\\\}|\\\\leq C_{2}\\\\frac{\\\\|f\\\\|_{% L^{\\\\Phi}(Q)}}{\\\\alpha}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> supported on <jats:italic>Q</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0078.png\\\" /> <jats:tex-math>{\\\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0098.png\\\" /> <jats:tex-math>{\\\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homothecy invariant basis differentiating integrals of all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo><</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0087.png\\\" /> <jats:tex-math>{\\\\int_{\\\\mathbb{R}^{n}}\\\\Phi(|f|)<\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the associated maximal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies both of the above weak type estimates.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用