几何最大算子弱型不等式的两种呈现形式

IF 0.8 4区 数学 Q2 MATHEMATICS
Paul Hagelstein, Giorgi Oniani, Alex Stokolos
{"title":"几何最大算子弱型不等式的两种呈现形式","authors":"Paul Hagelstein, Giorgi Oniani, Alex Stokolos","doi":"10.1515/gmj-2023-2113","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0076.png\" /> <jats:tex-math>{\\Phi:[0,\\infty)\\rightarrow[0,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Young’s function satisfying the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0070.png\" /> <jats:tex-math>{\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the geometric maximal operator associated to a homothecy invariant basis <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on measurable functions on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>Q</jats:italic> be the unit cube in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0058.png\" /> <jats:tex-math>{L^{\\Phi}(Q)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Orlicz space associated to Φ with the norm given by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo movablelimits=\"false\">inf</m:mo> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">{</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mi>Q</m:mi> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>c</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0019.png\" /> <jats:tex-math>\\|f\\|_{L^{\\Phi}(Q)}:=\\inf\\Biggl{\\{}c&gt;0:\\int_{Q}\\Phi\\bigg{(}\\frac{|f|}{c}\\bigg{% )}\\leq 1\\Bigg{\\}}.</jats:tex-math> </jats:alternatives> </jats:disp-formula> We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0033.png\" /> <jats:tex-math>|\\{x\\in\\mathbb{R}^{n}:M_{\\mathcal{B}}\\kern 1.422638ptf(x)&gt;\\alpha\\}|\\leq C_{1}% \\int_{\\mathbb{R}^{n}}\\Phi\\bigg{(}\\frac{|f|}{\\alpha}\\bigg{)}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mfrac> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mi>α</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0025.png\" /> <jats:tex-math>|\\{x\\in Q:M_{\\mathcal{B}}\\kern 1.422638ptf(x)&gt;\\alpha\\}|\\leq C_{2}\\frac{\\|f\\|_{% L^{\\Phi}(Q)}}{\\alpha}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> supported on <jats:italic>Q</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homothecy invariant basis differentiating integrals of all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0087.png\" /> <jats:tex-math>{\\int_{\\mathbb{R}^{n}}\\Phi(|f|)&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the associated maximal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies both of the above weak type estimates.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two presentations of a weak type inequality for geometric maximal operators\",\"authors\":\"Paul Hagelstein, Giorgi Oniani, Alex Stokolos\",\"doi\":\"10.1515/gmj-2023-2113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0076.png\\\" /> <jats:tex-math>{\\\\Phi:[0,\\\\infty)\\\\rightarrow[0,\\\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Young’s function satisfying the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0070.png\\\" /> <jats:tex-math>{\\\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the geometric maximal operator associated to a homothecy invariant basis <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0098.png\\\" /> <jats:tex-math>{\\\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on measurable functions on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>Q</jats:italic> be the unit cube in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0058.png\\\" /> <jats:tex-math>{L^{\\\\Phi}(Q)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Orlicz space associated to Φ with the norm given by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo movablelimits=\\\"false\\\">inf</m:mo> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\\\"260%\\\" minsize=\\\"260%\\\">{</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:mi>Q</m:mi> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>c</m:mi> </m:mfrac> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo maxsize=\\\"260%\\\" minsize=\\\"260%\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0019.png\\\" /> <jats:tex-math>\\\\|f\\\\|_{L^{\\\\Phi}(Q)}:=\\\\inf\\\\Biggl{\\\\{}c&gt;0:\\\\int_{Q}\\\\Phi\\\\bigg{(}\\\\frac{|f|}{c}\\\\bigg{% )}\\\\leq 1\\\\Bigg{\\\\}}.</jats:tex-math> </jats:alternatives> </jats:disp-formula> We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:mfrac> <m:mo maxsize=\\\"210%\\\" minsize=\\\"210%\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0033.png\\\" /> <jats:tex-math>|\\\\{x\\\\in\\\\mathbb{R}^{n}:M_{\\\\mathcal{B}}\\\\kern 1.422638ptf(x)&gt;\\\\alpha\\\\}|\\\\leq C_{1}% \\\\int_{\\\\mathbb{R}^{n}}\\\\Phi\\\\bigg{(}\\\\frac{|f|}{\\\\alpha}\\\\bigg{)}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0078.png\\\" /> <jats:tex-math>{\\\\alpha&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mfrac> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mi>α</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0025.png\\\" /> <jats:tex-math>|\\\\{x\\\\in Q:M_{\\\\mathcal{B}}\\\\kern 1.422638ptf(x)&gt;\\\\alpha\\\\}|\\\\leq C_{2}\\\\frac{\\\\|f\\\\|_{% L^{\\\\Phi}(Q)}}{\\\\alpha}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> supported on <jats:italic>Q</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0078.png\\\" /> <jats:tex-math>{\\\\alpha&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0098.png\\\" /> <jats:tex-math>{\\\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homothecy invariant basis differentiating integrals of all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0090.png\\\" /> <jats:tex-math>{\\\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0087.png\\\" /> <jats:tex-math>{\\\\int_{\\\\mathbb{R}^{n}}\\\\Phi(|f|)&lt;\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the associated maximal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\\\"script\\\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2113_eq_0063.png\\\" /> <jats:tex-math>{M_{\\\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies both of the above weak type estimates.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2113\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2113","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Φ : [ 0 , ∞ ) → [ 0 , ∞ ) {\Phi:[0,\infty)\rightarrow[0,\infty)}是满足Δ 2 {Delta_{2}} 的杨氏函数。 -条件,并让 M ℬ {M_{\mathcal{B}} 是与作用于ℝ n {\mathbb{R}^{n} 上可测函数的同神不变基 ℬ {mathcal{B}} 相关联的几何最大算子。} .设 Q 是 ℝ n {\mathbb{R}^{n}} 中的单位立方体,设 L Φ ( Q ) {L^{\Phi}(Q)} 是与Φ 相关的奥利兹空间,其规范为 ∥ f ∥ L Φ ( Q ) := inf { c > 0 : ∫ Q Φ ( | f | c ) ≤ 1 } . . \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|}{c}\bigg{% )}\leq 1\Bigg{\}}. 我们证明 M ℬ {M_{mathcal{B}}} 满足弱类型估计 | { x ∈ ℝ n : M ℬ f ( x ) > α }。 | ≤ C 1 ∫ ℝ n Φ ( | f | α ) |\{x\inmathbb{R}^{n}:M_{{mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{mathbb{R}^{n}}\Phi\bigg{(}\frac{|f|}{alpha}\bigg{)} for all measurable functions f on ℝ n {\mathbb{R}^{n}} and α >;0 {\alpha>0} 当且仅当 M ℬ {M_{mathcal{B}}} 满足弱类型估计 | { x∈ Q : M ℬ f ( x ) > α } ≤ C 2 ∥ f ∥ L Φ ( Q ) α |\{x\in Q:M_{mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{|f\|{% L^{Phi}(Q)}}{alpha} for all measurable functions f supported on Q and α > 0 {\alpha>0} .由于这一等价性,我们证明,如果 Φ 满足上述条件,且 ℬ {\mathcal{B}} 是一个同神不变基,微分 ℝ n {mathbb{R}^{n} 上所有可测函数 f 的积分,使得 ∫ ℝ n Φ ( | f | ) <;∞ {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} 那么相关的最大算子 M ℬ {M_{\mathcal{B}}} 满足上述两个弱类型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two presentations of a weak type inequality for geometric maximal operators
Let Φ : [ 0 , ) [ 0 , ) {\Phi:[0,\infty)\rightarrow[0,\infty)} be a Young’s function satisfying the Δ 2 {\Delta_{2}} -condition and let M {M_{\mathcal{B}}} be the geometric maximal operator associated to a homothecy invariant basis {\mathcal{B}} acting on measurable functions on n {\mathbb{R}^{n}} . Let Q be the unit cube in n {\mathbb{R}^{n}} and let L Φ ( Q ) {L^{\Phi}(Q)} be the Orlicz space associated to Φ with the norm given by f L Φ ( Q ) := inf { c > 0 : Q Φ ( | f | c ) 1 } . \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|}{c}\bigg{% )}\leq 1\Bigg{\}}. We show that M {M_{\mathcal{B}}} satisfies the weak type estimate | { x n : M f ( x ) > α } | C 1 n Φ ( | f | α ) |\{x\in\mathbb{R}^{n}:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{\mathbb{R}^{n}}\Phi\bigg{(}\frac{|f|}{\alpha}\bigg{)} for all measurable functions f on n {\mathbb{R}^{n}} and α > 0 {\alpha>0} if and only if M {M_{\mathcal{B}}} satisfies the weak type estimate | { x Q : M f ( x ) > α } | C 2 f L Φ ( Q ) α |\{x\in Q:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{\|f\|_{% L^{\Phi}(Q)}}{\alpha} for all measurable functions f supported on Q and α > 0 {\alpha>0} . As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and {\mathcal{B}} is a homothecy invariant basis differentiating integrals of all measurable functions f on n {\mathbb{R}^{n}} such that n Φ ( | f | ) < {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} , then the associated maximal operator M {M_{\mathcal{B}}} satisfies both of the above weak type estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信