沿理想的混杂代数上的广义推导

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2108
Brahim Boudine, Mohammed Zerra
{"title":"沿理想的混杂代数上的广义推导","authors":"Brahim Boudine, Mohammed Zerra","doi":"10.1515/gmj-2023-2108","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> be two associative rings, let <jats:italic>I</jats:italic> be an ideal of <jats:italic>B</jats:italic> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>Hom</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0167.png\" /> <jats:tex-math>{f\\in\\mathrm{Hom}(A,B)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a complete description of generalized derivations over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0101.png\" /> <jats:tex-math>{A\\bowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, when <jats:italic>A</jats:italic> is prime or semi-prime, we give several identities on generalized derivations which provide the commutativity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0101.png\" /> <jats:tex-math>{A\\bowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized derivations over amalgamated algebras along an ideal\",\"authors\":\"Brahim Boudine, Mohammed Zerra\",\"doi\":\"10.1515/gmj-2023-2108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> be two associative rings, let <jats:italic>I</jats:italic> be an ideal of <jats:italic>B</jats:italic> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>Hom</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2108_eq_0167.png\\\" /> <jats:tex-math>{f\\\\in\\\\mathrm{Hom}(A,B)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a complete description of generalized derivations over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2108_eq_0101.png\\\" /> <jats:tex-math>{A\\\\bowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, when <jats:italic>A</jats:italic> is prime or semi-prime, we give several identities on generalized derivations which provide the commutativity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2108_eq_0101.png\\\" /> <jats:tex-math>{A\\\\bowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 A 和 B 是两个关联环,让 I 是 B 的一个理想,让 f ∈ Hom ( A , B ) {f\inmathrm{Hom}(A,B)} 。在本文中,我们将完整地描述 A ⋈ f I {A\bowtie^{f}I} 上的广义推导。此外,当 A 是质数或半质数时,我们给出了关于广义推导的几个同素异形,这些同素异形提供了 A ⋈ f I {A\bowtie^{f}I} 的交换性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized derivations over amalgamated algebras along an ideal
Let A and B be two associative rings, let I be an ideal of B and let f Hom ( A , B ) {f\in\mathrm{Hom}(A,B)} . In this paper, we give a complete description of generalized derivations over A f I {A\bowtie^{f}I} . Furthermore, when A is prime or semi-prime, we give several identities on generalized derivations which provide the commutativity of A f I {A\bowtie^{f}I} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信