素环中涉及广义派生的集中化等式

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2109
Vincenzo De Filippis, Pallavee Gupta, Shailesh Kumar Tiwari, Balchand Prajapati
{"title":"素环中涉及广义派生的集中化等式","authors":"Vincenzo De Filippis, Pallavee Gupta, Shailesh Kumar Tiwari, Balchand Prajapati","doi":"10.1515/gmj-2023-2109","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring of characteristic not equal to 2, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒰</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0527.png\" /> <jats:tex-math>{\\mathcal{U}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be Utumi quotient ring of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒞</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0481.png\" /> <jats:tex-math>{\\mathcal{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the extended centroid of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let Δ be a generalized derivation on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0428.png\" /> <jats:tex-math>{\\delta_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0440.png\" /> <jats:tex-math>{\\delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be derivations on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0622.png\" /> <jats:tex-math>{p(v)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a multilinear polynomial on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is non-central valued on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0519.png\" /> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0411.png\" /> <jats:tex-math>{\\delta_{1}(\\Delta^{2}(p(v))p(v))=\\delta_{2}(\\Delta(p(v)^{2}))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0668.png\" /> <jats:tex-math>{v\\in\\mathcal{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we find the complete description of Δ, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0428.png\" /> <jats:tex-math>{\\delta_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2109_eq_0440.png\" /> <jats:tex-math>{\\delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralizing identities involving generalized derivations in prime rings\",\"authors\":\"Vincenzo De Filippis, Pallavee Gupta, Shailesh Kumar Tiwari, Balchand Prajapati\",\"doi\":\"10.1515/gmj-2023-2109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring of characteristic not equal to 2, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒰</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0527.png\\\" /> <jats:tex-math>{\\\\mathcal{U}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be Utumi quotient ring of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒞</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0481.png\\\" /> <jats:tex-math>{\\\\mathcal{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the extended centroid of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let Δ be a generalized derivation on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0428.png\\\" /> <jats:tex-math>{\\\\delta_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0440.png\\\" /> <jats:tex-math>{\\\\delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be derivations on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0622.png\\\" /> <jats:tex-math>{p(v)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a multilinear polynomial on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is non-central valued on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0519.png\\\" /> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0411.png\\\" /> <jats:tex-math>{\\\\delta_{1}(\\\\Delta^{2}(p(v))p(v))=\\\\delta_{2}(\\\\Delta(p(v)^{2}))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0668.png\\\" /> <jats:tex-math>{v\\\\in\\\\mathcal{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we find the complete description of Δ, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>δ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0428.png\\\" /> <jats:tex-math>{\\\\delta_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2109_eq_0440.png\\\" /> <jats:tex-math>{\\\\delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 ℛ {\mathcal{R}} 是一个特征不等于 2 的素环,设 𝒰 {\mathcal{U}} 是 ℛ {\mathcal{R}} 的乌图米商环,设 𝒞 {\mathcal{C}} 是 ℛ {\mathcal{R}} 的扩展中心点。 .设 Δ 是ℛ {\mathcal{R}} 上的广义推导。 让 δ 1 {\delta_{1}} 和 δ 2 {\delta_{2}} 是ℛ {\mathcal{R}} 上的导数。 .设 p ( v ) {p(v)} 是ℛ {mathcal{R}} 上的多线性多项式。 上的非中心值。 .如果 δ 1 ( Δ 2 ( p ( v ) ) p ( v ) ) = δ 2 ( Δ ( p ( v ) 2 ) ) {\delta_{1}(\Delta^{2}(p(v))p(v))=\delta_{2}(\Delta(p(v)^{2}))} 对于所有 v∈ ℛ n {v\in\mathcal{R}^{n}} ,那么我们就能找到完整的描述。 那么我们就能找到对 Δ、δ 1 {delta_{1}} 和 δ 2 {delta_{2}} 的完整描述。 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Centralizing identities involving generalized derivations in prime rings
Let {\mathcal{R}} be a prime ring of characteristic not equal to 2, let 𝒰 {\mathcal{U}} be Utumi quotient ring of {\mathcal{R}} and let 𝒞 {\mathcal{C}} be the extended centroid of {\mathcal{R}} . Let Δ be a generalized derivation on {\mathcal{R}} , and let δ 1 {\delta_{1}} and δ 2 {\delta_{2}} be derivations on {\mathcal{R}} . Let p ( v ) {p(v)} be a multilinear polynomial on {\mathcal{R}} , which is non-central valued on {\mathcal{R}} . If δ 1 ( Δ 2 ( p ( v ) ) p ( v ) ) = δ 2 ( Δ ( p ( v ) 2 ) ) {\delta_{1}(\Delta^{2}(p(v))p(v))=\delta_{2}(\Delta(p(v)^{2}))} for all v n {v\in\mathcal{R}^{n}} , then we find the complete description of Δ, δ 1 {\delta_{1}} and δ 2 {\delta_{2}} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信