利用空间填充曲线确定非线性不等式的解集,以寻找平面机器人的工作空间

IF 1.8 3区 数学 Q1 Mathematics
Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev
{"title":"利用空间填充曲线确定非线性不等式的解集,以寻找平面机器人的工作空间","authors":"Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev","doi":"10.1007/s10898-023-01352-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but <i>all</i> the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots\",\"authors\":\"Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev\",\"doi\":\"10.1007/s10898-023-01352-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but <i>all</i> the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-023-01352-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01352-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了非线性不等式系统解集的近似和可视化问题。假设不等式的左手部分可能是多极值和无差别的。因此,使用梯度的传统局部方法无法适用于这种情况。这类问题出现在许多科学应用中,特别是在寻找机器人的工作空间时,需要确定非线性不等式系统的所有解,而不是一个解。全局优化算法可以作为开发解决这一问题的方法的灵感来源。本文提出了两种新方法,它们使用了在全局优化中常用的 Peano-Hilbert 空间填充曲线的两种不同近似值。本文确定了新方法的收敛条件。对几个机器人的工作空间问题进行的数值实验表明,新算法性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots

Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots

In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but all the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信