Luke W J Cameron, William K Roche, Katy Beckett, Nicholas L Payne
{"title":"鞘鳃类动物捕放科学回顾:当前知识综述、最佳实践的意义和未来研究方向。","authors":"Luke W J Cameron, William K Roche, Katy Beckett, Nicholas L Payne","doi":"10.1093/conphys/coad100","DOIUrl":null,"url":null,"abstract":"<p><p>Until relatively recently commercial fisheries have been considered the main driving factor for elasmobranch population declines. However, this belief has begun to shift with the realization that recreational elasmobranch catches may equal or exceed commercial catches in some regions. Many recreational angling fisheries for elasmobranchs involve high participation in catch-and-release angling practices. However, high release rates may not necessarily equate to high survival rates. Therefore, to assist accurate assessment of the potential impact of recreational angling on elasmobranchs, we attempted to summarize and integrate currently available information on specific risk factors associated with recreational angling, alongside associated mortality rates, as well as information on angler behaviour as it relates to identified risk factors. We categorized the major angling-related effects into two groups: injury-induced effects; and biochemical disruption-induced effects; providing a summary of each group and outlining the main lethal and sub-lethal outcomes stemming from these. These outcomes include immediate and delayed post-release mortality, behavioural recovery periods (which may in-turn confer increased predation risks), chronic health impacts and capture-induced parturition and abortion. Additionally, we detailed a range of angling practices and equipment, including hook-type, hook removal and emersion (i.e. air exposure), as well as inter- and intra-specific factors, including aerobic scope, respiratory mode, body size and species-specific behaviours, which are likely to influence injury and/or mortality rates and should therefore be considered when assessing angling-related impacts. We then utilized these data to provide a range of actionable recommendations for both anglers and policymakers which would serve to reduce the population-level impact of recreational angling on these enigmatic animals.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756054/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of elasmobranch catch-and-release science: synthesis of current knowledge, implications for best practice and future research directions.\",\"authors\":\"Luke W J Cameron, William K Roche, Katy Beckett, Nicholas L Payne\",\"doi\":\"10.1093/conphys/coad100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Until relatively recently commercial fisheries have been considered the main driving factor for elasmobranch population declines. However, this belief has begun to shift with the realization that recreational elasmobranch catches may equal or exceed commercial catches in some regions. Many recreational angling fisheries for elasmobranchs involve high participation in catch-and-release angling practices. However, high release rates may not necessarily equate to high survival rates. Therefore, to assist accurate assessment of the potential impact of recreational angling on elasmobranchs, we attempted to summarize and integrate currently available information on specific risk factors associated with recreational angling, alongside associated mortality rates, as well as information on angler behaviour as it relates to identified risk factors. We categorized the major angling-related effects into two groups: injury-induced effects; and biochemical disruption-induced effects; providing a summary of each group and outlining the main lethal and sub-lethal outcomes stemming from these. These outcomes include immediate and delayed post-release mortality, behavioural recovery periods (which may in-turn confer increased predation risks), chronic health impacts and capture-induced parturition and abortion. Additionally, we detailed a range of angling practices and equipment, including hook-type, hook removal and emersion (i.e. air exposure), as well as inter- and intra-specific factors, including aerobic scope, respiratory mode, body size and species-specific behaviours, which are likely to influence injury and/or mortality rates and should therefore be considered when assessing angling-related impacts. We then utilized these data to provide a range of actionable recommendations for both anglers and policymakers which would serve to reduce the population-level impact of recreational angling on these enigmatic animals.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coad100\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coad100","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
A review of elasmobranch catch-and-release science: synthesis of current knowledge, implications for best practice and future research directions.
Until relatively recently commercial fisheries have been considered the main driving factor for elasmobranch population declines. However, this belief has begun to shift with the realization that recreational elasmobranch catches may equal or exceed commercial catches in some regions. Many recreational angling fisheries for elasmobranchs involve high participation in catch-and-release angling practices. However, high release rates may not necessarily equate to high survival rates. Therefore, to assist accurate assessment of the potential impact of recreational angling on elasmobranchs, we attempted to summarize and integrate currently available information on specific risk factors associated with recreational angling, alongside associated mortality rates, as well as information on angler behaviour as it relates to identified risk factors. We categorized the major angling-related effects into two groups: injury-induced effects; and biochemical disruption-induced effects; providing a summary of each group and outlining the main lethal and sub-lethal outcomes stemming from these. These outcomes include immediate and delayed post-release mortality, behavioural recovery periods (which may in-turn confer increased predation risks), chronic health impacts and capture-induced parturition and abortion. Additionally, we detailed a range of angling practices and equipment, including hook-type, hook removal and emersion (i.e. air exposure), as well as inter- and intra-specific factors, including aerobic scope, respiratory mode, body size and species-specific behaviours, which are likely to influence injury and/or mortality rates and should therefore be considered when assessing angling-related impacts. We then utilized these data to provide a range of actionable recommendations for both anglers and policymakers which would serve to reduce the population-level impact of recreational angling on these enigmatic animals.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.