Marco Niekampf, Paul Meyer, Felix S C Quade, Alexander R Schmidt, Tim Salditt, Sven Bradler
{"title":"棍虫和叶虫(昆虫纲:鞘翅目)主要品系的驱虫腺解剖结构差异很大。","authors":"Marco Niekampf, Paul Meyer, Felix S C Quade, Alexander R Schmidt, Tim Salditt, Sven Bradler","doi":"10.1186/s40850-023-00189-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phasmatodea are well known for their ability to disguise themselves by mimicking twigs, leaves, or bark, and are therefore commonly referred to as stick and leaf insects. In addition to this and other defensive strategies, many phasmatodean species use paired prothoracic repellent glands to release defensive chemicals when disturbed by predators or parasites. These glands are considered as an autapomorphic trait of the Phasmatodea. However, detailed knowledge of the gland anatomy and chemical compounds is scarce and only a few species were studied until now. We investigated the repellent glands for a global sampling of stick and leaf insects that represents all major phasmatodean lineages morphologically via µCT scans and analyzed the anatomical traits in a phylogenetic context.</p><p><strong>Results: </strong>All twelve investigated species possess prothoracic repellent glands that we classify into four distinct gland types. 1: lobe-like glands, 2: sac-like glands without ejaculatory duct, 3: sac-like glands with ejaculatory duct and 4: tube-like glands. Lobe-like glands are exclusively present in Timema, sac-like glands without ejaculatory duct are only found in Orthomeria, whereas the other two types are distributed across all other taxa (= Neophasmatodea). The relative size differences of these glands vary significantly between species, with some glands not exceeding in length the anterior quarter of the prothorax, and other glands extending to the end of the metathorax.</p><p><strong>Conclusions: </strong>We could not detect any strong correlation between aposematic or cryptic coloration of the examined phasmatodeans and gland type or size. We hypothesize that a comparatively small gland was present in the last common ancestor of Phasmatodea and Euphasmatodea, and that the gland volume increased independently in subordinate lineages of the Occidophasmata and Oriophasmata. Alternatively, the stem species of Neophasmatodea already developed large glands that were reduced in size several times independently. In any case, our results indicate a convergent evolution of the gland types, which was probably closely linked to properties of the chemical components and different predator selection pressures. Our study is the first showing the great anatomical variability of repellent glands in stick and leaf insects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759571/pdf/","citationCount":"0","resultStr":"{\"title\":\"High disparity in repellent gland anatomy across major lineages of stick and leaf insects (Insecta: Phasmatodea).\",\"authors\":\"Marco Niekampf, Paul Meyer, Felix S C Quade, Alexander R Schmidt, Tim Salditt, Sven Bradler\",\"doi\":\"10.1186/s40850-023-00189-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Phasmatodea are well known for their ability to disguise themselves by mimicking twigs, leaves, or bark, and are therefore commonly referred to as stick and leaf insects. In addition to this and other defensive strategies, many phasmatodean species use paired prothoracic repellent glands to release defensive chemicals when disturbed by predators or parasites. These glands are considered as an autapomorphic trait of the Phasmatodea. However, detailed knowledge of the gland anatomy and chemical compounds is scarce and only a few species were studied until now. We investigated the repellent glands for a global sampling of stick and leaf insects that represents all major phasmatodean lineages morphologically via µCT scans and analyzed the anatomical traits in a phylogenetic context.</p><p><strong>Results: </strong>All twelve investigated species possess prothoracic repellent glands that we classify into four distinct gland types. 1: lobe-like glands, 2: sac-like glands without ejaculatory duct, 3: sac-like glands with ejaculatory duct and 4: tube-like glands. Lobe-like glands are exclusively present in Timema, sac-like glands without ejaculatory duct are only found in Orthomeria, whereas the other two types are distributed across all other taxa (= Neophasmatodea). The relative size differences of these glands vary significantly between species, with some glands not exceeding in length the anterior quarter of the prothorax, and other glands extending to the end of the metathorax.</p><p><strong>Conclusions: </strong>We could not detect any strong correlation between aposematic or cryptic coloration of the examined phasmatodeans and gland type or size. We hypothesize that a comparatively small gland was present in the last common ancestor of Phasmatodea and Euphasmatodea, and that the gland volume increased independently in subordinate lineages of the Occidophasmata and Oriophasmata. Alternatively, the stem species of Neophasmatodea already developed large glands that were reduced in size several times independently. In any case, our results indicate a convergent evolution of the gland types, which was probably closely linked to properties of the chemical components and different predator selection pressures. Our study is the first showing the great anatomical variability of repellent glands in stick and leaf insects.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40850-023-00189-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-023-00189-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High disparity in repellent gland anatomy across major lineages of stick and leaf insects (Insecta: Phasmatodea).
Background: Phasmatodea are well known for their ability to disguise themselves by mimicking twigs, leaves, or bark, and are therefore commonly referred to as stick and leaf insects. In addition to this and other defensive strategies, many phasmatodean species use paired prothoracic repellent glands to release defensive chemicals when disturbed by predators or parasites. These glands are considered as an autapomorphic trait of the Phasmatodea. However, detailed knowledge of the gland anatomy and chemical compounds is scarce and only a few species were studied until now. We investigated the repellent glands for a global sampling of stick and leaf insects that represents all major phasmatodean lineages morphologically via µCT scans and analyzed the anatomical traits in a phylogenetic context.
Results: All twelve investigated species possess prothoracic repellent glands that we classify into four distinct gland types. 1: lobe-like glands, 2: sac-like glands without ejaculatory duct, 3: sac-like glands with ejaculatory duct and 4: tube-like glands. Lobe-like glands are exclusively present in Timema, sac-like glands without ejaculatory duct are only found in Orthomeria, whereas the other two types are distributed across all other taxa (= Neophasmatodea). The relative size differences of these glands vary significantly between species, with some glands not exceeding in length the anterior quarter of the prothorax, and other glands extending to the end of the metathorax.
Conclusions: We could not detect any strong correlation between aposematic or cryptic coloration of the examined phasmatodeans and gland type or size. We hypothesize that a comparatively small gland was present in the last common ancestor of Phasmatodea and Euphasmatodea, and that the gland volume increased independently in subordinate lineages of the Occidophasmata and Oriophasmata. Alternatively, the stem species of Neophasmatodea already developed large glands that were reduced in size several times independently. In any case, our results indicate a convergent evolution of the gland types, which was probably closely linked to properties of the chemical components and different predator selection pressures. Our study is the first showing the great anatomical variability of repellent glands in stick and leaf insects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.