Alec Bass, Suzanne N Morin, Michael Guidea, Jacqueline T A T Lam, Antony D Karelis, Mylène Aubertin-Leheudre, Dany H Gagnon
{"title":"针对使用轮椅的脊髓损伤患者的外骨骼辅助地面行走计划对骨质强度成像和血清标志物的潜在影响:前后研究。","authors":"Alec Bass, Suzanne N Morin, Michael Guidea, Jacqueline T A T Lam, Antony D Karelis, Mylène Aubertin-Leheudre, Dany H Gagnon","doi":"10.2196/53084","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As many as 60% of individuals use a wheelchair long term after a spinal cord injury (SCI). This mode of locomotion leads to chronic decline in lower-extremity weight-bearing activities and contributes to the development of severe sublesional osteoporosis and high rates of fragility fracture. Overground exoskeleton-assisted walking programs provide a novel opportunity to increase lower-extremity weight bearing, with the potential to improve bone health.</p><p><strong>Objective: </strong>The aim of the study is to measure the potential effects of an exoskeleton-assisted walking program on lower-extremity bone strength and bone remodeling biomarkers in individuals with chronic (≥18 months) SCI who use a wheelchair.</p><p><strong>Methods: </strong>In total, 10 participants completed a 16-week exoskeleton-assisted walking program (34 individualized 1-hour sessions, progressing from 1 to 3 per week). Bone mineral density and bone strength markers (dual-energy x-ray absorptiometry: total body, left arm, leg, total hip, and femoral neck and peripheral quantitative computed tomography: 25% of left femur and 66% of left tibia) as well as bone remodeling biomarkers (formation=osteocalcin and resorption=C-telopeptide) were measured before and after intervention and compared using nonparametric tests. Changes were considered significant and meaningful if the following criteria were met: P<0.1, effect size ≥0.5, and relative variation >5%.</p><p><strong>Results: </strong>Significant and meaningful increases were observed at the femur (femoral neck bone mineral content, bone strength index, and stress-strain index) and tibia (cortical cross-sectional area and polar moment of inertia) after the intervention (all P<.10). We also noted a decrease in estimated femoral cortical thickness. However, no changes in bone remodeling biomarkers were found.</p><p><strong>Conclusions: </strong>These initial results suggest promising improvements in bone strength markers after a 16-week exoskeleton-assisted walking program in individuals with chronic SCI. Additional research with larger sample sizes, longer interventions (possibly of greater loading intensity), and combined modalities (eg, pharmacotherapy or functional electrical stimulation) are warranted to strengthen current evidence.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT03989752; https://clinicaltrials.gov/ct2/show/NCT03989752.</p><p><strong>International registered report identifier (irrid): </strong>RR2-10.2196/19251.</p>","PeriodicalId":36224,"journal":{"name":"JMIR Rehabilitation and Assistive Technologies","volume":"11 ","pages":"e53084"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Effects of an Exoskeleton-Assisted Overground Walking Program for Individuals With Spinal Cord Injury Who Uses a Wheelchair on Imaging and Serum Markers of Bone Strength: Pre-Post Study.\",\"authors\":\"Alec Bass, Suzanne N Morin, Michael Guidea, Jacqueline T A T Lam, Antony D Karelis, Mylène Aubertin-Leheudre, Dany H Gagnon\",\"doi\":\"10.2196/53084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As many as 60% of individuals use a wheelchair long term after a spinal cord injury (SCI). This mode of locomotion leads to chronic decline in lower-extremity weight-bearing activities and contributes to the development of severe sublesional osteoporosis and high rates of fragility fracture. Overground exoskeleton-assisted walking programs provide a novel opportunity to increase lower-extremity weight bearing, with the potential to improve bone health.</p><p><strong>Objective: </strong>The aim of the study is to measure the potential effects of an exoskeleton-assisted walking program on lower-extremity bone strength and bone remodeling biomarkers in individuals with chronic (≥18 months) SCI who use a wheelchair.</p><p><strong>Methods: </strong>In total, 10 participants completed a 16-week exoskeleton-assisted walking program (34 individualized 1-hour sessions, progressing from 1 to 3 per week). Bone mineral density and bone strength markers (dual-energy x-ray absorptiometry: total body, left arm, leg, total hip, and femoral neck and peripheral quantitative computed tomography: 25% of left femur and 66% of left tibia) as well as bone remodeling biomarkers (formation=osteocalcin and resorption=C-telopeptide) were measured before and after intervention and compared using nonparametric tests. Changes were considered significant and meaningful if the following criteria were met: P<0.1, effect size ≥0.5, and relative variation >5%.</p><p><strong>Results: </strong>Significant and meaningful increases were observed at the femur (femoral neck bone mineral content, bone strength index, and stress-strain index) and tibia (cortical cross-sectional area and polar moment of inertia) after the intervention (all P<.10). We also noted a decrease in estimated femoral cortical thickness. However, no changes in bone remodeling biomarkers were found.</p><p><strong>Conclusions: </strong>These initial results suggest promising improvements in bone strength markers after a 16-week exoskeleton-assisted walking program in individuals with chronic SCI. Additional research with larger sample sizes, longer interventions (possibly of greater loading intensity), and combined modalities (eg, pharmacotherapy or functional electrical stimulation) are warranted to strengthen current evidence.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT03989752; https://clinicaltrials.gov/ct2/show/NCT03989752.</p><p><strong>International registered report identifier (irrid): </strong>RR2-10.2196/19251.</p>\",\"PeriodicalId\":36224,\"journal\":{\"name\":\"JMIR Rehabilitation and Assistive Technologies\",\"volume\":\"11 \",\"pages\":\"e53084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Rehabilitation and Assistive Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/53084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Rehabilitation and Assistive Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/53084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Potential Effects of an Exoskeleton-Assisted Overground Walking Program for Individuals With Spinal Cord Injury Who Uses a Wheelchair on Imaging and Serum Markers of Bone Strength: Pre-Post Study.
Background: As many as 60% of individuals use a wheelchair long term after a spinal cord injury (SCI). This mode of locomotion leads to chronic decline in lower-extremity weight-bearing activities and contributes to the development of severe sublesional osteoporosis and high rates of fragility fracture. Overground exoskeleton-assisted walking programs provide a novel opportunity to increase lower-extremity weight bearing, with the potential to improve bone health.
Objective: The aim of the study is to measure the potential effects of an exoskeleton-assisted walking program on lower-extremity bone strength and bone remodeling biomarkers in individuals with chronic (≥18 months) SCI who use a wheelchair.
Methods: In total, 10 participants completed a 16-week exoskeleton-assisted walking program (34 individualized 1-hour sessions, progressing from 1 to 3 per week). Bone mineral density and bone strength markers (dual-energy x-ray absorptiometry: total body, left arm, leg, total hip, and femoral neck and peripheral quantitative computed tomography: 25% of left femur and 66% of left tibia) as well as bone remodeling biomarkers (formation=osteocalcin and resorption=C-telopeptide) were measured before and after intervention and compared using nonparametric tests. Changes were considered significant and meaningful if the following criteria were met: P<0.1, effect size ≥0.5, and relative variation >5%.
Results: Significant and meaningful increases were observed at the femur (femoral neck bone mineral content, bone strength index, and stress-strain index) and tibia (cortical cross-sectional area and polar moment of inertia) after the intervention (all P<.10). We also noted a decrease in estimated femoral cortical thickness. However, no changes in bone remodeling biomarkers were found.
Conclusions: These initial results suggest promising improvements in bone strength markers after a 16-week exoskeleton-assisted walking program in individuals with chronic SCI. Additional research with larger sample sizes, longer interventions (possibly of greater loading intensity), and combined modalities (eg, pharmacotherapy or functional electrical stimulation) are warranted to strengthen current evidence.