通过数据分析和整合方面的最佳实践,扩大可穿戴硅胶腕带在社区参与式研究中的使用范围。

Q2 Computer Science
Lisa M Bramer, Holly M Dixon, David J Degnan, Diana Rohlman, Julie B Herbstman, Kim A Anderson, Katrina M Waters
{"title":"通过数据分析和整合方面的最佳实践,扩大可穿戴硅胶腕带在社区参与式研究中的使用范围。","authors":"Lisa M Bramer, Holly M Dixon, David J Degnan, Diana Rohlman, Julie B Herbstman, Kim A Anderson, Katrina M Waters","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"170-186"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration.\",\"authors\":\"Lisa M Bramer, Holly M Dixon, David J Degnan, Diana Rohlman, Julie B Herbstman, Kim A Anderson, Katrina M Waters\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"29 \",\"pages\":\"170-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

可穿戴硅胶腕带是一种快速发展的暴露评估技术,它为研究人员提供了研究以前无法接触到的群体的能力,并有可能更全面地反映不同社区的化学品暴露情况。然而,目前还没有既定的最佳实践来分析一项研究或多项研究中的数据,从而限制了这些数据对大型荟萃分析的影响和使用。我们利用纽约市和俄勒冈州尤金市参与者佩戴的 600 多条腕带上的三项研究数据,首次提交了一份详细说明腕带数据特性的手稿。我们进一步讨论了常用统计建模方法中的关键领域和注意事项,并提供了具体实例,这些领域和注意事项必须建立最佳实践,才能进行荟萃分析和整合来自多项研究的数据。最后,我们详细介绍了研究人员在机器学习、荟萃分析和数据整合方面将面临的重要挑战,以便超越以特定人群为重点的单项研究的有限范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration.

Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信