将空间 Omics 驱动的跨模态预训练应用于癌症病理分析的基于图的深度学习。

Q2 Computer Science
Zarif L Azher, Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B Diallo, Brock C Christensen, Lucas A Salas, Fred W Kolling, Laurent Perreard, Scott M Palisoul, Louis J Vaickus, Joshua J Levy
{"title":"将空间 Omics 驱动的跨模态预训练应用于癌症病理分析的基于图的深度学习。","authors":"Zarif L Azher, Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B Diallo, Brock C Christensen, Lucas A Salas, Fred W Kolling, Laurent Perreard, Scott M Palisoul, Louis J Vaickus, Joshua J Levy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"464-476"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.\",\"authors\":\"Zarif L Azher, Michael Fatemi, Yunrui Lu, Gokul Srinivasan, Alos B Diallo, Brock C Christensen, Lucas A Salas, Fred W Kolling, Laurent Perreard, Scott M Palisoul, Louis J Vaickus, Joshua J Levy\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"29 \",\"pages\":\"464-476\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

基于图的深度学习在癌症组织病理学图像分析中大有可为,它可以将整个切片图像中复杂的形态和结构上下文化,从而进行高质量的下游结果预测(例如:预后)。这些方法依赖于由较大切片组成的图像斑块的信息表征(即嵌入),这些斑块被用作切片图中的节点属性。空间 omics 数据(包括空间转录组学)是一种新型范例,可提供大量详细信息。将这些数据与以 50 微米分辨率定位的相应组织学成像配对,有助于开发能更好地了解癌变的形态学和分子基础的算法。在这里,我们探索了利用空间转录组学数据与对比性跨模态预训练机制生成深度学习模型的实用性,该模型可以为基于图的学习任务提取分子和组织学信息。在癌症分期、淋巴结转移预测、生存预测和组织聚类分析方面的表现表明,与利用现有方案中的组织学信息相比,所提出的方法为基于图的组织病理学切片深度学习模型带来了改进,证明了挖掘空间组学数据以增强病理学工作流深度学习的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信