PEPSI:空间蛋白质组学成像的极性测量表明免疫细胞参与其中。

Q2 Computer Science
Eric Wu, Zhenqin Wu, Aaron T Mayer, Alexandro E Trevino, James Zou
{"title":"PEPSI:空间蛋白质组学成像的极性测量表明免疫细胞参与其中。","authors":"Eric Wu, Zhenqin Wu, Aaron T Mayer, Alexandro E Trevino, James Zou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Subcellular protein localization is important for understanding functional states of cells, but measuring and quantifying this information can be difficult and typically requires high-resolution microscopy. In this work, we develop a metric to define surface protein polarity from immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within tumor microenvironments. We apply this metric to characterize over two million cells across 600 patient samples and find that cells identified as having polar expression exhibit characteristics relating to tumor-immune cell engagement. Additionally, we show that incorporating these polarity-defined cell subtypes improves the performance of deep learning models trained to predict patient survival outcomes. This method provides a first look at using subcellular protein expression patterns to phenotype immune cell functional states with applications to precision medicine.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"492-505"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEPSI: Polarity measurements from spatial proteomics imaging suggest immune cell engagement.\",\"authors\":\"Eric Wu, Zhenqin Wu, Aaron T Mayer, Alexandro E Trevino, James Zou\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subcellular protein localization is important for understanding functional states of cells, but measuring and quantifying this information can be difficult and typically requires high-resolution microscopy. In this work, we develop a metric to define surface protein polarity from immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within tumor microenvironments. We apply this metric to characterize over two million cells across 600 patient samples and find that cells identified as having polar expression exhibit characteristics relating to tumor-immune cell engagement. Additionally, we show that incorporating these polarity-defined cell subtypes improves the performance of deep learning models trained to predict patient survival outcomes. This method provides a first look at using subcellular protein expression patterns to phenotype immune cell functional states with applications to precision medicine.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"29 \",\"pages\":\"492-505\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

亚细胞蛋白质定位对了解细胞的功能状态非常重要,但测量和量化这些信息可能很困难,通常需要高分辨率的显微镜。在这项工作中,我们开发了一种度量方法,从免疫荧光(IF)成像数据中定义表面蛋白极性,并用它来识别肿瘤微环境中不同的免疫细胞状态。我们应用该指标对 600 份患者样本中的 200 多万个细胞进行了特征描述,发现被识别为具有极性表达的细胞表现出与肿瘤免疫细胞参与相关的特征。此外,我们还表明,结合这些极性定义的细胞亚型,可以提高为预测患者生存结果而训练的深度学习模型的性能。这种方法首次将亚细胞蛋白质表达模式用于表型免疫细胞功能状态,并应用于精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PEPSI: Polarity measurements from spatial proteomics imaging suggest immune cell engagement.

Subcellular protein localization is important for understanding functional states of cells, but measuring and quantifying this information can be difficult and typically requires high-resolution microscopy. In this work, we develop a metric to define surface protein polarity from immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within tumor microenvironments. We apply this metric to characterize over two million cells across 600 patient samples and find that cells identified as having polar expression exhibit characteristics relating to tumor-immune cell engagement. Additionally, we show that incorporating these polarity-defined cell subtypes improves the performance of deep learning models trained to predict patient survival outcomes. This method provides a first look at using subcellular protein expression patterns to phenotype immune cell functional states with applications to precision medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信