肾上皮线粒体:对高血压肾病的影响

IF 4.2 2区 医学 Q1 PHYSIOLOGY
Krisztian Stadler, Daria V Ilatovskaya
{"title":"肾上皮线粒体:对高血压肾病的影响","authors":"Krisztian Stadler, Daria V Ilatovskaya","doi":"10.1002/cphy.c220033","DOIUrl":null,"url":null,"abstract":"<p><p>According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"14 1","pages":"5225-5242"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease.\",\"authors\":\"Krisztian Stadler, Daria V Ilatovskaya\",\"doi\":\"10.1002/cphy.c220033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.</p>\",\"PeriodicalId\":10573,\"journal\":{\"name\":\"Comprehensive Physiology\",\"volume\":\"14 1\",\"pages\":\"5225-5242\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cphy.c220033\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c220033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据美国疾病控制和预防中心的数据,每 2 个美国成年人中就有 1 人患有高血压,每 7 人中就有 1 人患有慢性肾病。事实上,在美国,高血压是导致肾衰竭的第二大原因;高血压是一种复杂的疾病,其特点是肾功能不全,导致肾功能不全,并由肾功能不全引起。高血压肾损伤伴随着线粒体损伤和氧化应激,由于肾细胞结构和功能的多样性,线粒体损伤和氧化应激在肾小管中的调节和表现各不相同,这一点已得到公认。本文总结了线粒体生物能和代谢的相关知识,重点关注肾线粒体功能,并讨论了有关上皮线粒体生物能在高血压肾组织功能障碍发展过程中的作用所积累的证据。© 2024 美国生理学会。Compr Physiol 14:5225-5242, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease.

According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信