{"title":"装饰 AKLT 模型的光谱间隙稳定性和基态可分辨性","authors":"Angelo Lucia, Alvin Moon, Amanda Young","doi":"10.1007/s00023-023-01398-8","DOIUrl":null,"url":null,"abstract":"<div><p>We use cluster expansion methods to establish local the indistiguishability of the finite volume ground states for the AKLT model on decorated hexagonal lattices with decoration parameter at least 5. Our estimates imply that the model satisfies local topological quantum order, and so, the spectral gap above the ground state is stable against local perturbations.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3603 - 3648"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01398-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of the Spectral Gap and Ground State Indistinguishability for a Decorated AKLT Model\",\"authors\":\"Angelo Lucia, Alvin Moon, Amanda Young\",\"doi\":\"10.1007/s00023-023-01398-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use cluster expansion methods to establish local the indistiguishability of the finite volume ground states for the AKLT model on decorated hexagonal lattices with decoration parameter at least 5. Our estimates imply that the model satisfies local topological quantum order, and so, the spectral gap above the ground state is stable against local perturbations.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 8\",\"pages\":\"3603 - 3648\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-023-01398-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01398-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01398-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Stability of the Spectral Gap and Ground State Indistinguishability for a Decorated AKLT Model
We use cluster expansion methods to establish local the indistiguishability of the finite volume ground states for the AKLT model on decorated hexagonal lattices with decoration parameter at least 5. Our estimates imply that the model satisfies local topological quantum order, and so, the spectral gap above the ground state is stable against local perturbations.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.