{"title":"分数 Hardy-Hénon 系统的 Liouville 型定理","authors":"Kui Li, Meng Yu, Zhitao Zhang","doi":"10.1007/s00030-023-00903-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in <span>\\({\\mathbb {R}}^N \\backslash \\{0\\}\\)</span> are also distributional solutions in <span>\\({\\mathbb {R}}^N\\)</span>. Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville-type theorems for fractional Hardy–Hénon systems\",\"authors\":\"Kui Li, Meng Yu, Zhitao Zhang\",\"doi\":\"10.1007/s00030-023-00903-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in <span>\\\\({\\\\mathbb {R}}^N \\\\backslash \\\\{0\\\\}\\\\)</span> are also distributional solutions in <span>\\\\({\\\\mathbb {R}}^N\\\\)</span>. Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00903-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00903-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Liouville-type theorems for fractional Hardy–Hénon systems
In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in \({\mathbb {R}}^N \backslash \{0\}\) are also distributional solutions in \({\mathbb {R}}^N\). Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.