参数积分的随机复杂性和适应的作用 I. 有限维情况

IF 1.8 2区 数学 Q1 MATHEMATICS
Stefan Heinrich
{"title":"参数积分的随机复杂性和适应的作用 I. 有限维情况","authors":"Stefan Heinrich","doi":"10.1016/j.jco.2023.101821","DOIUrl":null,"url":null,"abstract":"<div><p>We study the randomized <em>n</em><span>-th minimal errors (and hence the complexity) of vector valued mean computation, which is the discrete version of parametric<span> integration. The results of the present paper form the basis for the complexity analysis of parametric integration in Sobolev spaces, which will be presented in Part 2. Altogether this extends previous results of Heinrich and Sindambiwe (1999) </span></span><span>[12]</span> and Wiegand (2006) <span>[27]</span>. Moreover, a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting is solved.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case\",\"authors\":\"Stefan Heinrich\",\"doi\":\"10.1016/j.jco.2023.101821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the randomized <em>n</em><span>-th minimal errors (and hence the complexity) of vector valued mean computation, which is the discrete version of parametric<span> integration. The results of the present paper form the basis for the complexity analysis of parametric integration in Sobolev spaces, which will be presented in Part 2. Altogether this extends previous results of Heinrich and Sindambiwe (1999) </span></span><span>[12]</span> and Wiegand (2006) <span>[27]</span>. Moreover, a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting is solved.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000900\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000900","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了向量估值均值计算的随机 n 次最小误差(以及复杂性),这是参数积分的离散版本。本文的结果构成了索博列夫空间中参数积分复杂性分析的基础,这将在第二部分中介绍。总之,本文扩展了海因里希和辛丹比韦(《复杂性》,15 (1999),317-341)以及维根德(Shaker Verlag,2006 年)之前的研究成果。此外,我们还解决了基于信息的复杂性的一个基本问题,即随机设置中线性问题的适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case

We study the randomized n-th minimal errors (and hence the complexity) of vector valued mean computation, which is the discrete version of parametric integration. The results of the present paper form the basis for the complexity analysis of parametric integration in Sobolev spaces, which will be presented in Part 2. Altogether this extends previous results of Heinrich and Sindambiwe (1999) [12] and Wiegand (2006) [27]. Moreover, a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting is solved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信