M. Pourjafar-Chelikdani, M. Y. Heidari, A. Vakili, A. Abdollahi, A. Mahdavi Nejad, K. Sadeghy
{"title":"利用粘性微型泵输送触变性流体","authors":"M. Pourjafar-Chelikdani, M. Y. Heidari, A. Vakili, A. Abdollahi, A. Mahdavi Nejad, K. Sadeghy","doi":"10.1007/s13367-023-00083-w","DOIUrl":null,"url":null,"abstract":"<div><p>A cylinder rotating in an off-center position across a microchannel is known to generate a net flow for highly viscous Newtonian fluids. The mechanism is also known to be a viable option for the transport of viscoelastic or viscoplastic fluids albeit with a slight drop in performance. In the present work, the applicability of this mechanism is numerically investigated for the transport of (inelastic) time-dependent fluids obeying the structural-based Quemada model. By numerically solving the equations of motion, it is predicted that viscous micropumps can be used for the transport of thixotropic fluids although the obtained numerical results suggest that there exists a critical thixotropy number (a dimensionless number related to the fluid’s natural time) at which the flow rate is at its lowest value. It is shown that the critical thixotropy number can be avoided from the response of the fluid by properly choosing the geometrical parameters of the device. The general conclusion is that viscous micropumps can be deemed as an efficient mechanism for the transport of thixotropic fluids in microfluidic systems provided that the thixotropy number is sufficiently small, i.e., the fluid is strongly thixotropic. The device is predicted to be more suitable for anti-thixotropic fluids.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"36 1","pages":"55 - 69"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the use of viscous micropumps for the transport of thixotropic fluids\",\"authors\":\"M. Pourjafar-Chelikdani, M. Y. Heidari, A. Vakili, A. Abdollahi, A. Mahdavi Nejad, K. Sadeghy\",\"doi\":\"10.1007/s13367-023-00083-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A cylinder rotating in an off-center position across a microchannel is known to generate a net flow for highly viscous Newtonian fluids. The mechanism is also known to be a viable option for the transport of viscoelastic or viscoplastic fluids albeit with a slight drop in performance. In the present work, the applicability of this mechanism is numerically investigated for the transport of (inelastic) time-dependent fluids obeying the structural-based Quemada model. By numerically solving the equations of motion, it is predicted that viscous micropumps can be used for the transport of thixotropic fluids although the obtained numerical results suggest that there exists a critical thixotropy number (a dimensionless number related to the fluid’s natural time) at which the flow rate is at its lowest value. It is shown that the critical thixotropy number can be avoided from the response of the fluid by properly choosing the geometrical parameters of the device. The general conclusion is that viscous micropumps can be deemed as an efficient mechanism for the transport of thixotropic fluids in microfluidic systems provided that the thixotropy number is sufficiently small, i.e., the fluid is strongly thixotropic. The device is predicted to be more suitable for anti-thixotropic fluids.</p></div>\",\"PeriodicalId\":683,\"journal\":{\"name\":\"Korea-Australia Rheology Journal\",\"volume\":\"36 1\",\"pages\":\"55 - 69\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea-Australia Rheology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13367-023-00083-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-023-00083-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
On the use of viscous micropumps for the transport of thixotropic fluids
A cylinder rotating in an off-center position across a microchannel is known to generate a net flow for highly viscous Newtonian fluids. The mechanism is also known to be a viable option for the transport of viscoelastic or viscoplastic fluids albeit with a slight drop in performance. In the present work, the applicability of this mechanism is numerically investigated for the transport of (inelastic) time-dependent fluids obeying the structural-based Quemada model. By numerically solving the equations of motion, it is predicted that viscous micropumps can be used for the transport of thixotropic fluids although the obtained numerical results suggest that there exists a critical thixotropy number (a dimensionless number related to the fluid’s natural time) at which the flow rate is at its lowest value. It is shown that the critical thixotropy number can be avoided from the response of the fluid by properly choosing the geometrical parameters of the device. The general conclusion is that viscous micropumps can be deemed as an efficient mechanism for the transport of thixotropic fluids in microfluidic systems provided that the thixotropy number is sufficiently small, i.e., the fluid is strongly thixotropic. The device is predicted to be more suitable for anti-thixotropic fluids.
期刊介绍:
The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.