卡尔德龙建筑的乘数

IF 0.6 4区 数学 Q3 MATHEMATICS
E. I. Berezhnoi
{"title":"卡尔德龙建筑的乘数","authors":"E. I. Berezhnoi","doi":"10.1134/S0016266323020016","DOIUrl":null,"url":null,"abstract":"<p> On the basis of a new approach to the Calderón construction <span>\\(X_0^{\\theta} X_1^{1-\\theta}\\)</span> for ideal spaces <span>\\(X_0\\)</span> and <span>\\(X_1\\)</span> and a parameter <span>\\(\\theta \\in [0,1]\\)</span>, final results concerning a description of multipliers spaces are obtained. In particular, it is shown that if ideal spaces <span>\\(X_0\\)</span> and <span>\\(X_1\\)</span> have the Fatou property, then <span>\\(M(X_0^{\\theta_0} X_1^{1-\\theta_0}\\,{\\to}\\,X_0^{\\theta_1} X_1^{1-\\theta_1}) = M(X_1^{\\theta_1 - \\theta_0} \\to X_0^{\\theta_1 -\\theta_0})\\)</span> for <span>\\(0 &lt;\\theta_0 &lt;\\theta_1 &lt;1\\)</span>. Due to the absence of constraints on the ideal spaces <span>\\(X_0\\)</span> and <span>\\(X_1\\)</span>, the obtained results apply to a large class of ideal spaces. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 2","pages":"87 - 98"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipliers for the Calderón Construction\",\"authors\":\"E. I. Berezhnoi\",\"doi\":\"10.1134/S0016266323020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> On the basis of a new approach to the Calderón construction <span>\\\\(X_0^{\\\\theta} X_1^{1-\\\\theta}\\\\)</span> for ideal spaces <span>\\\\(X_0\\\\)</span> and <span>\\\\(X_1\\\\)</span> and a parameter <span>\\\\(\\\\theta \\\\in [0,1]\\\\)</span>, final results concerning a description of multipliers spaces are obtained. In particular, it is shown that if ideal spaces <span>\\\\(X_0\\\\)</span> and <span>\\\\(X_1\\\\)</span> have the Fatou property, then <span>\\\\(M(X_0^{\\\\theta_0} X_1^{1-\\\\theta_0}\\\\,{\\\\to}\\\\,X_0^{\\\\theta_1} X_1^{1-\\\\theta_1}) = M(X_1^{\\\\theta_1 - \\\\theta_0} \\\\to X_0^{\\\\theta_1 -\\\\theta_0})\\\\)</span> for <span>\\\\(0 &lt;\\\\theta_0 &lt;\\\\theta_1 &lt;1\\\\)</span>. Due to the absence of constraints on the ideal spaces <span>\\\\(X_0\\\\)</span> and <span>\\\\(X_1\\\\)</span>, the obtained results apply to a large class of ideal spaces. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 2\",\"pages\":\"87 - 98\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323020016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323020016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 基于对理想空间 \(X_0\) 和 \(X_1\) 以及参数 \(\theta \ in [0,1]\) 的卡尔德龙构造 \(X_0^{\theta} X_1^{1-\theta}\) 的新方法,得到了关于乘数空间描述的最终结果。特别是,研究表明,如果理想空间 \(X_0\) 和 \(X_1\) 具有法图属性,那么 \(M(X_0^{\theta_0} X_1^{1-\theta_0}\、{X_0^{\theta_1} X_1^{1-\theta_1}) = M(X_1^{\theta_1 -\theta_0}\to X_0^{\theta_1 -\theta_0})\) for (0 <;\theta_0 <\theta_1 <1\).由于理想空间 \(X_0\) 和 \(X_1\) 不存在约束,所得到的结果适用于一大类理想空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipliers for the Calderón Construction

On the basis of a new approach to the Calderón construction \(X_0^{\theta} X_1^{1-\theta}\) for ideal spaces \(X_0\) and \(X_1\) and a parameter \(\theta \in [0,1]\), final results concerning a description of multipliers spaces are obtained. In particular, it is shown that if ideal spaces \(X_0\) and \(X_1\) have the Fatou property, then \(M(X_0^{\theta_0} X_1^{1-\theta_0}\,{\to}\,X_0^{\theta_1} X_1^{1-\theta_1}) = M(X_1^{\theta_1 - \theta_0} \to X_0^{\theta_1 -\theta_0})\) for \(0 <\theta_0 <\theta_1 <1\). Due to the absence of constraints on the ideal spaces \(X_0\) and \(X_1\), the obtained results apply to a large class of ideal spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信