图自形定列构和图自形定阙变式

Pub Date : 2023-12-29 DOI:10.1134/S001626632302003X
Zhijie Dong, Haitao Ma
{"title":"图自形定列构和图自形定阙变式","authors":"Zhijie Dong,&nbsp;Haitao Ma","doi":"10.1134/S001626632302003X","DOIUrl":null,"url":null,"abstract":"<p> We define certain subvarieties, called <span>\\(\\theta\\)</span>-Hecke correspondences, in Cartesian products of diagram automorphism fixed quiver varieties. These give us generators of diagram automorphism fixed Lie algebras. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagram Automorphism Fixed Lie Algebras and Diagram Automorphism Fixed Quiver Varieties\",\"authors\":\"Zhijie Dong,&nbsp;Haitao Ma\",\"doi\":\"10.1134/S001626632302003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We define certain subvarieties, called <span>\\\\(\\\\theta\\\\)</span>-Hecke correspondences, in Cartesian products of diagram automorphism fixed quiver varieties. These give us generators of diagram automorphism fixed Lie algebras. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001626632302003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632302003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We define certain subvarieties, called \(\theta\)-Hecke correspondences, in Cartesian product of diagram automorphism fixed quiver varieties.这些子域给我们提供了图自动态固定李代数的生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Diagram Automorphism Fixed Lie Algebras and Diagram Automorphism Fixed Quiver Varieties

We define certain subvarieties, called \(\theta\)-Hecke correspondences, in Cartesian products of diagram automorphism fixed quiver varieties. These give us generators of diagram automorphism fixed Lie algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信